1.单选题- (共10题)
5.
我国数学家华罗庚曾建议,用一副反应勾股定理的数形关系图来作为和外星人交谈的语言,就勾股定理本身而言,它揭示了直角三角形的三边之间的关系,它体现的数学思想方法是
A.分类思想 | B.方程思想 | C.转化 | D.数形结合 |
2.填空题- (共6题)
13.
我国南宋著名数学家秦九少韶的著作《数书九章》记载有这样一道题:“问有沙田一块,有三斜,其中小斜三里,中斜四里,大斜五里,欲知为田几何?”这道题讲的是有一块三角形沙田,三条边长分别为3里,4里,5里,问这块沙田的面积有多大?题中“里”是我国市制单位,1里=500米,则沙田的面积为_____平方千米.
16.
数学课上,小明给出了画菱形的一种方法,如图,分别以点
,
为圆心,大于
长为半径画弧,两弧相交于
、
两点,分别连接
、
、
、
,所得四边形
为菱形,这样做的依据是____________________.











3.解答题- (共6题)
19.
三边长分别为
、
、
,求这个三角形的面积,小明同学在求面积时先画了一个每个小正方形的边长均为1的正方形网格,再在网格中画出格点
(
各个顶点都在网格的格点上).如图1所示,这样借用网格(不需
的高)就能算出三角形的面积,这种方法叫构造法.
(1)
的面积为___________________.
(2)若
的三边长分别为
、
、
,请在图2的网格中画出
,使得
的三个顶点都在格点上,求此三角形的面积.








(1)

(2)若






21.
综合与实践

类比思考:

数学活动课上,小红画了如图1所示的两个共用直角顶点的等腰直角三角形与等腰直角三角形
,其中
,
,连接
,
、
、
分别为边
、
、
的中点,连接
、
.
小红发现了:、
有一定的关系,数量关系为_____________________________;位置关系为_________________.

类比思考:
如图2,在图1的基础上,将等腰直角三角形绕点
旋转一定的角度,其它条件都不变,小红发现的结论还成立吗?请说明理由.(提示:连接
、
并延长交于一点
)
在上述类比思考的基础上,小红做了进一步的探究.如图3,作任意一个三角形,其中
,在三角形外侧以
为腰作等腰直角三角形
,以
为腰作等腰直角三角形
,分别取斜边
、
与边
的中点
、
、
,连接
、
、
,试判断三角形
的形状,并说明理由.

试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(6道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:1
7星难题:0
8星难题:1
9星难题:18