刷题首页
题库
高中数学
题干
设
,
为三维空间中
个点组成的有限集,其中任意四点不在一个平面上,将集合
中的点染成白色或黑色,使得任意一个与集合
至少交于四个点的球面具有这样的性质:这些交点中恰有一半的点为白色的.证明:集合
中所有的点均在一个球面上,
上一题
下一题
0.99难度 解答题 更新时间:2019-03-19 10:40:06
答案(点此获取答案解析)
同类题1
将
棋盘的每个方格都随意染黑白两色之一,每次操作是将其中同行、同列、同对角线的连续五个方格改变成相反的颜色.试问:能否经过有限次操作,使得所有方格的颜色都变成与原先相反的颜色?
同类题2
将一枚棋子放在一个
的棋盘上,记
为从左、上数第
行第
列的小方格,求所有的四元数组
,使得从
出发,经过每个小方格恰一次到达
(每步为将棋子从一个小方格移到与之有共同边的另一个小方格).
同类题3
圆周上每个点均被染为红、黄、蓝三色之一,并且三种颜色的点均出现。现从圆周上任取n个点。若其中总存在三个点构成三个顶点同色的钝角三角形,则n的最小可能值为________。
同类题4
在
名学生中,已知任意三人中有两人互相认识,任意四人中有两人互相不认识,则
的最大值为______.
相关知识点
竞赛知识点
排列组合
组合问题
图论
染色与拉姆塞问题