刷题首页
题库
高中数学
题干
我们知道:在平面内,点
到直线
的距离公式
,通过类比的方法,可求得:在空间中,点
到直线
的距离为( )
A.3
B.5
C.6
D.
上一题
下一题
0.99难度 单选题 更新时间:2019-12-14 01:43:42
答案(点此获取答案解析)
同类题1
下列说法中运用了类比推理的是( )
A.人们通过大量试验得出掷硬币出现正面向上的概率为0.5
B.在平面内,若两个正三角形的边长的比为
,则它们的面积比为
.从而推出:在空间中,若两个正四面体的棱长的比为
,则它们的体积比为
C.由数列的前5项猜出该数列的通项公式
D.数学中由周期函数的定义判断某函数是否为周期函数
同类题2
在平面几何中有如下结论:若正三角形
的内切圆周长为
,外接圆周长为
,则
.推广到空间几何可以得到类似结论:若正四面体
的内切球表面积为
,外接球表面积为
,则
__________.
同类题3
如图,在梯形ABCD中,AB∥DC,AB=a,CD=b(a>b).若EF∥AB,EF到CD与AB的距离之比为m:n,则可推算出:
,试用类比的方法,推想出下述问题的结果.在上面的梯形ABCD中,延长梯形两腰AD、BC相交于O点,设△OAB、△OCD的面积分别为S
1
、S
2
,EF∥AB,且EF到CD与AB的距离之比为m:n,则△OEF的面积S
0
与S
1
、S
2
的关系是____.
同类题4
如图(1)有面积关系
,则图(2)有体积关系
___________
.
同类题5
已知边长分别为
a
,
b
,
c
的三角形
ABC
面积为
S
,内切圆
O
的半径为
r
,连接
OA
,
OB
,
OC
,则三角形
OAB
,
OBC
,
OAC
的面积分别为
,由
得
,类比得四面体的体积为
V
,四个面的面积分别为
,
,
,
,则内切球的半径
______.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比