刷题首页
题库
高中数学
题干
关于圆周率
,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计
的值:先请200名同学,每人随机写下一个都小于1的正实数对(
x
,
y
);再统计两数能与1构成钝角三角形三边的数对(
x
,
y
)的个数
m
;最后再根据统计数
m
来估计
的值.假如统计结果是
m
=56,那么可以估计
__________
.(用分数表示)
上一题
下一题
0.99难度 填空题 更新时间:2017-07-27 03:48:40
答案(点此获取答案解析)
同类题1
矩形长为8,宽为3,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆为96颗,以此试验数据为依据可以估计椭圆的面积为( )
A.7.68
B.8.68
C.16.32
D.17.32
同类题2
在边长为
的正方形内有一个半径为1的圆,向正方形中随机扔一粒豆子(忽略大小,视为质点),若它落在该圆内的概率为
,则用随机模拟的方法得到的圆周率
的近似值为( )
A.
B.
C.
D.
同类题3
向边长为
的正方形内随机投
粒豆子,其中
粒豆子落在到正方形的顶点
的距离不大于
的区域内(图中阴影区域),由此可估计
的近似值为______.(保留四位有效数字)
同类题4
从区间
随机抽取
个数
,
,…,
,
,
,…,
,组成坐标平面上的
个点
,
,…,
,其中到原点距离小于
的点有
个,用随机模拟的方法得到的圆周率
的近似值为( )
A.
B.
C.
D.
同类题5
如图,在边长为
的正方形内有不规则图形
,由电脑随机从正方形中抽取
个点,若落在图形
内和图形
外的点分别为
,则图形
面积的估计值为( )
A.
B.
C.
D.
相关知识点
计数原理与概率统计
概率
几何概型
均匀随机数的产生
用随机模拟法估算几何概率