刷题首页
题库
高中数学
题干
如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为
,若向弦图内随机抛掷500颗米粒(大小忽略不计,取
),则落在小正方形(阴影)内的米粒数大约为( )
A.134
B.67
C.200
D.250
上一题
下一题
0.99难度 单选题 更新时间:2019-01-07 04:41:03
答案(点此获取答案解析)
同类题1
由不等式组
确定的平面区域为
,由不等式组
确定的平面区域为
,在
内随机的取一点
,则点
落在区域
内的概率为()
A.
B.
C.
D.
同类题2
斐波那契螺旋线,也称“黄金螺旋线”,是根据斐波那契数列(1,1,2,3,5,8…)画出来的螺旋曲线,由中世纪意大利数学家列奥纳多•斐波那契最先提出.如图,矩形
是以斐波那契数为边长的正方形拼接而成的,在每个正方形中作一个圆心角为90°的圆弧,这些圆弧所连成的弧线就是斐波那契螺旋线的一部分.在矩形
内任取一点,该点取自阴影部分的概率为( )
A.
B.
C.
D.
同类题3
在正方形中随机投一点,则该点落在该正方形内切圆内的概率为( )
A.
B.
C.
D.
同类题4
如图,在边长为2的正方形中,随机撒1000粒豆子,若按π≈3计算,估计落到阴影部分的豆子数为( )
A.125
B.150
C.175
D.200
同类题5
中国古代的数学家们最早发现并应用勾股定理,而最先对勾股定理进行证明的是三国时期的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,
个相等的直角三角形再加上中间的那个小正方形组成一个大的正方形。若直角三角形的较小锐角
的正切值为
,现向该正方形区域内投掷-枚飞镖,则飞镖落在小正方形内(阴影部分)的概率是( )
A.
B.
C.
D.
相关知识点
计数原理与概率统计
概率
几何概型
几何概型计算公式
几何概型-面积型
用随机模拟法估算几何概率