刷题首页
题库
高中数学
题干
随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.
年龄(单位:岁)
频数
5
10
15
10
5
5
赞成人数
5
10
12
7
2
1
(1)若以“年龄45岁为分界点”,由以上统计数据完成下面
列联表,并判断有多大的把握认为“使用微信交流”的态度与人的年龄有关?
年龄低于45岁的人数
年龄不低于45岁的人数
合计
不赞成
赞成
合计
(2)若从年龄在
的被调查人中随机选取2人进行追踪调查,求2人中至少有1人赞成“使用微信交流”的概率.
下面临界值表供参考:
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
(参考公式:
)
上一题
下一题
0.99难度 解答题 更新时间:2017-05-06 12:50:40
答案(点此获取答案解析)
同类题1
某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(
I
)应收集多少位男生样本数据?
(
II
)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:
,
,
,
,
,
,试估计该校学生每周平均体育运动时间超过4个小时的概率;
(Ⅲ)在样本数据中,有165位男生的每周平均体育运动时间超过4个小时请完成每周平均体育运动时间与性别的列联表,并判断是否有
%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
男生
女士
总计
每周平均体育运动时
间不超过4小时
每周平均体育运动时
间超过4小时
总计
附:
0.10
0.05
0.010
0.005
k
2.706
3.841
6.635
7.879
同类题2
某研究机构追踪40名小学毕业生随年限与数学水平学习的情况.统计了年限与等级考试的平均成绩,如下列数据:
学习年限
2
3
4
5
6
等级成绩
2.2
3.8
5.5
6.5
7.0
(1)已知
与
满足线性关系,试求年限
与等级考试成绩
的线性回归直线方程
.(其中
,
)
(2)如果对40名学生“是否对数学学习感兴趣”进行调查,初中生和高中生对数学的喜欢程度如下联表(其中学习年限2年或3年的为初中阶段,年限为4年或5年或6年的为高中阶段)
喜欢
不喜欢
合计
初中生
8
12
20
高中生
16
4
20
合计
24
16
40
根据上表计算
,并说明是否有
的把握认为“喜欢数学与学习年限有关”(其中
其中
)
0.025
0.010
0.005
5.024
6.635
7.897
同类题3
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100 名电视观众,相关的数据如下表(单位:人)所示:
收看文艺节目
收看新闻节目
总计
20至40岁
40
18
58
大于40岁
15
27
42
总计
55
45
100
由表中数据直观分析,收看新闻节目的观众是否与年龄有关:__________.(填“是”或“否”)
同类题4
教育局为贯彻两会精神,开展了送教下乡活动.为了了解该活动的受欢迎程度,对某校初一年级按分层抽样的方法抽取一部分学生进行调研,已知该年级学生共有1200人,其中女生共有540人,被抽到调研的男生共有55人.
(1)该校被抽到调研的女生共有多少人?
(2)若每个参与调研的学生都必须在“欢迎”与“不太欢迎”中选一项,调研的情况统计如下表:
欢迎
不太欢迎
合计
男生
45
女生
15
合计
请将表格填写完整,并根据此表数据说明是否有
的把握认为“欢迎该活动与性别有关”.
(3)在该校初一(二)班被抽到的5名学生中有3名学生欢迎该活动,2名学生不太欢迎该活动,现从这5名学生中随机抽取2人,求恰有1人欢迎该活动的概率.
附:参考公式及数据:
①随机变量
,其中
.
②独立性检验的临界值表:
0.050
0.010
0.005
0.001
3.841
6.635
7.879
10.828
同类题5
2019年4月,甲乙两校的学生参加了某考试机构举行的大联考,现从这两校参加考试的学生数学成绩在100分及以上的试卷中用系统抽样的方法各抽取了20份试卷,并将这40份试卷的得分制作成如下的茎叶图.
(1)试通过茎叶图比较这40份试卷的两校学生数学成绩的中位数;
(2)若把数学成绩不低于135分的记作数学成绩优秀,根据茎叶图中的数据,判断是否有90
的把握认为数学成绩在100分及以上的学生中数学成绩是否优秀与所在学校有关;
(3)若从这40名学生中选取数学成绩在
的学生,用分层抽样的方式从甲乙两校中抽取5人,再从这5人中随机抽取3人分析其失分原因,求这3人中恰有2人是乙校学生的概率.
参考公式与临界值表:
,其中
.
0.100
0.050
0.025
0.010
0.001
2.706
3.841
5.024
6.635
10.828
相关知识点
计数原理与概率统计
统计案例
独立性检验