刷题首页
题库
高中数学
题干
某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差
与实验室每天每100颗种子浸泡后的发芽数
,作了初步处理,得到下表:
日期
3月1日
3月2日
3月3日
3月4日
3月5日
温差
10
11
13
12
9
发芽率
(颗)
23
25
30
26
16
(1)从3月1日至3月5日中任选2天,记发芽的种子数分别为
,求事件“
均小于26”的概率;
(2)请根据3月1日至3月5日的数据,求出
关于
的线性回归方程
,并预报3月份昼夜温差为14度时实验室每天100颗种子浸泡后的发芽(取整数值).
附:回归方程
中的斜率和截距最小二乘法估计公式分别为:
,
,
,
.
上一题
下一题
0.99难度 解答题 更新时间:2017-04-06 10:51:01
答案(点此获取答案解析)
同类题1
张三同学从每年生日时对自己的身高测量后记录如表:
(附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
)
(1)求身高
关于年龄
的线性回归方程;(可能会用到的数据:
(cm))
(2)利用(1)中的线性回归方程,分析张三同学
岁起到
岁身高的变化情况,如
岁之前都符合这一变化,请预测张三同学
岁时的身高。
同类题2
“双十一网购狂欢节”源于淘宝商城(天猫)
年
月
日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是
月
日成为天猫举办大规模促销活动的固定日期.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商为分析近
年“双十一”期间的宣传费用
(单位:万元)和利润
(单位:十万元)之间的关系,搜集了相关数据,得到下列表格:
(万元)
(十万元)
(1)请用相关系数
说明
与
之间是否存在线性相关关系(当
时,说明
与
之间具有线性相关关系);
(2)建立
关于
的线性回归方程(系数精确到
),预测当宣传费用为
万元时的利润.
附参考公式:回归方程
中
和
最小二乘估计公式分别为
,
,相关系数
参考数据:
,
,
,
同类题3
在—次对人体脂肪百分比和年龄关系的研究中,研究人员获得如下一组样本数据:
年龄
脂肪
由表中数据求得
关于
的线性回归方程为
,若年龄
的值为
,则
的估计值为
.
同类题4
共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:
租用单车数量
(千辆)
2
3
4
5
8
每天一辆车平均成本
(元)
3.2
2.4
2
1.9
1.7
根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:
,方程乙:
.
(1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1)(备注:
,
称为相应于点
的残差(也叫随机误差));
租用单车数量
(千辆)
2
3
4
5
8
每天一辆车平均成本
(元)
3.2
2.4
2
1.9
1.7
模型甲
估计值
2.4
2.1
1.6
残差
0
-0.1
0.1
模型乙
估计值
2.3
2
1.9
残差
0.1
0
0
②分别计算模型甲与模型乙的残差平方和
及
,并通过比较
的大小,判断哪个模型拟合效果更好.
(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).
同类题5
某玩具厂生产出一种新型儿童泡沫玩具飞机,为更精确的确定最终售价,该厂采用了多种价格对该玩具飞机进行了试销,某销售点的销售情况如下表:
单价
(元)
8
9
10
11
12
销量
(架)
40
36
30
24
20
从散点图可以看出,这些点大致分布在一条直线的附近,变量
,
有较强的线性相关性.
(1)求销量
关于
的回归方程;
(2)若每架该玩具飞机的成本价为5元,利用(1)的结果,预测每架该玩具飞机的定价为多少元时,总利润最大.(结果保留一位小数)
(附:
,
,
,
.)
相关知识点
计数原理与概率统计
统计
变量间的相关关系
最小二乘法
求回归直线方程