刷题首页
题库
高中数学
题干
市面上有某品牌
型和
型两种节能灯,假定
型节能灯使用寿命都超过5000小时,经销商对
型节能灯使用寿命进行了调查统计,得到如下频率分布直方图:
某商家因原店面需要重新装修,需租赁一家新店面进行周转,合约期一年.新店面需安装该品牌节能灯5支(同种型号)即可正常营业.经了解,
型20瓦和
型55瓦的两种节能灯照明效果相当,都适合安装.已知
型和
型节能灯每支的价格分别为120元、25元,当地商业电价为0.75元/千瓦时,假定该店面正常营业一年的照明时间为3600小时,若正常营业期间灯坏了立即购买同型灯更换.(用频率估计概率)
(1)若该商家新店面全部安装了
型节能灯,求一年内恰好更换了2支灯的概率;
(2)若只考虑灯的成本和消耗电费,你认为该商家应选择哪种型号的节能灯,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-23 08:38:53
答案(点此获取答案解析)
同类题1
某校为了调查“阳光体育活动”在高三年级的实施情况,从本市某校高三男生中随机抽取一个班的男生进行投掷实心铅球(重3 kg)测试,成绩在6.9米以上的为合格.把所得数据进行整理后,分成5组,画出频率分布直方图的一部分(如图所示),已知成绩在9.9,11.4)的频数是4.
(1)求这次铅球测试成绩合格的人数;
(2)若从今年该市高中毕业男生中随机抽取两名,记
ξ
表示两人中成绩不合格的人数, 利用样本估计总体,求
ξ
的分布列和数学期望
Eξ
.
同类题2
某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格.某校有800 名学生参加了初赛,所有学生的成绩均在区间
内,其频率分布直方图如图所示.
(Ⅰ)求初赛分数在区间
内的频率;
(Ⅱ)求获得复赛资格的人数;
(Ⅲ)据此直方图估算学生初赛成绩的平均数.
同类题3
某学校组织高一、高二年级学生进行了“纪念建国70周年”的知识竞赛.从这两个年级各随机抽取了40名学生,对其成绩进行分析,得到了高一年级成绩的频率分布直方图和高二年级成绩的频数分布表.
成绩分组
频数
2
6
16
14
2
(1)若成绩不低于80分为“达标”,估计高一年级知识竞赛的达标率;
(2)在抽取的学生中,从成绩为
的学生中随机选取2名学生,代表学校外出参加比赛,求这2名学生来自于同一年级的概率;
(3)记高一、高二两个年级知识竞赛的平均分分别为
,
,试估计
,
的大小关系.(只需写出结论)
同类题4
北京地铁八通线西起四惠站,东至土桥站,全长
,共设13座车站
目前八通线执行2014年12月28日制订的计价标准,各站间计程票价
单位:元
如下:
四惠
3
3
3
3
4
4
4
5
5
5
5
5
四惠东
3
3
3
4
4
4
5
5
5
5
5
高碑店
3
3
3
4
4
4
4
5
5
5
传媒大学
3
3
3
4
4
4
4
5
5
双桥
3
3
3
4
4
4
4
4
管庄
3
3
3
3
4
4
4
八里桥
3
3
3
3
4
4
通州北苑
3
3
3
3
3
果园
3
3
3
3
九棵树
3
3
3
梨园
3
3
临河里
3
土桥
四惠
四惠东
高碑店
传媒大学
双桥
管庄
八里桥
通州北苑
果园
九棵树
梨园
临河里
土桥
1
在13座车站中任选两个不同的车站,求两站间票价为5元的概率;
2
在土桥出站口随机调查了
n
名下车的乘客,将在八通线各站上车情况统计如下表:
上车站点
通州北苑
果园
九棵树
梨园
临河里
双桥
管庄
八里桥
四惠
四惠东
高碑店
传媒大学
频率
a
b
人数
c
15
25
求
a
,
b
,
c
,
n
的值,并计算这
n
名乘客乘车平均消费金额;
3
某人从四惠站上车乘坐八通线到土桥站,中途任选一站出站一次,之后再从该站乘车
若想两次乘车花费总金额最少,可以选择中途哪站下车?
写出一个即可
同类题5
“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用,出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段:
,
,
,
,
,
后得到如图所示的频率分布直方图.问:
(1)估计在40名读书者中年龄分布在
的人数;
(2)求40名读书者年龄的平均数和中位数;
(3)若从年龄在
的读书者中任取2名,求这两名读书者年龄在
的人数
的分布列及数学期望.
相关知识点
计数原理与概率统计
统计
用样本估计总体
频率分布直方图
频率分布直方图的实际应用
建立二项分布模型解决实际问题