刷题首页
题库
高中数学
题干
(本小题满分13分)设椭圆C:
的离心率
,点M在椭圆C上,点M到椭圆C的两个焦点的距离之和是4.
(1)求椭圆C的方程;
(2)若椭圆
的方程为
,椭圆
的方程为
,则称椭圆
是椭圆
的
倍相似椭圆.已知椭圆
是椭圆C的3倍相似椭圆.若椭圆C的任意一条切线
交椭圆
于M,N两点,O为坐标原点,试研究当切线
变化时
面积的变化情况,并给予证明.
上一题
下一题
0.99难度 解答题 更新时间:2015-07-20 07:14:35
答案(点此获取答案解析)
同类题1
已知椭圆
,点
在椭圆
上,椭圆
的离心率是
.
(1)求椭圆
的标准方程;
(2)设点
为椭圆长轴的左端点,
为椭圆上异于椭圆
长轴端点的两点,记直线
斜率分别为
,若
,请判断直线
是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.
同类题2
在平面直角坐标系
xOy
中,已知椭圆
E
:
(
a
>
b
>0)的离心率为
,且椭圆
E
的短轴的端点到焦点的距离等于2.
(1)求椭圆
E
的标准方程;
(2)己知
A
,
B
分别为椭圆
E
的左、右顶点,过
x
轴上一点
P
(异于原点)作斜率为
k
(
k
≠0)的直线
l
与椭圆
E
相交于
C
,
D
两点,且直线
AC
与
BD
相交于点
Q
.①若
k
=1,求线段
CD
中点横坐标的取值范围;②判断
是否为定值,并说明理由.
同类题3
已知椭圆
C
:
(
a
>
b
>0)的两个焦点分别为
F
1
,
F
2
,离心率为
,过
F
1
的直线
l
与椭圆
C
交于
M
,
N
两点,且△
MNF
2
的周长为8.
(1)求椭圆
C
的方程;
(2)若直线
y
=
kx
+
b
与椭圆
C
分别交于
A
,
B
两点,且
OA
⊥
OB
,试问点
O
到直线
AB
的距离是否为定值,证明你的结论.
同类题4
已知椭圆
的右焦点为
,离心率为
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
相交于
两点,且以
为直径的圆经过原点
,求证:点
到直线
的距离为定值;
(3)在(2)的条件下,求
面积的最大值.
同类题5
已知圆
,椭圆
(
)的短轴长等于圆
半径的
倍,
的离心率为
.
(1)求
的方程;
(2)若直线
与
交于
两点,且与圆
相切,证明:
为直角三角形.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定值问题