刷题宝
  • 刷题首页
题库 高中数学

题干

(本小题满分14分)已知椭圆的离心率,它的一
个顶点在抛物线的准线上.
(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆上两点,已知,且.
(ⅰ)求的取值范围;
(ⅱ)判断的面积是否为定值?若是,求出该定值,不是请说明理由.
上一题 下一题 0.99难度 解答题 更新时间:2015-06-19 11:20:45

答案(点此获取答案解析)

同类题1

已知椭圆的左、右焦点分别为短轴两个端点为且四边形是边长为的正方形.
(Ⅰ)求椭圆的方程;
(Ⅱ)若分别是椭圆长轴的左、右端点,动点满足,连接,交椭圆于点.证明:为定值.

同类题2

椭圆25x2+16y2=1的焦点坐标是________.

同类题3

已知点的坐标分别为,,直线相交于点,且它们的斜率之积是
(1)求点的轨迹方程;
(2)过点作两条互相垂直的射线,与点的轨迹交于两点.试判断点到直线的距离是否为定值.若是请求出这个定值,若不是请说明理由.

同类题4

设椭圆的左右焦点分别为,,在椭圆L上的点满足,且,,成等差数列.
(1)求椭圆L的方程;
(2)过点A作两条倾斜角互补的直线,,它们与椭圆L的另一个交点分别为B,C,试问直线BC的斜率是否是定值?若是,求出该斜率;若不是,请说明理由.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 椭圆
  • 椭圆的标准方程
  • 椭圆中的定值问题
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)