刷题首页
题库
高中数学
题干
已知椭圆
:
的短轴长为
,离心率为
,圆
的圆心
在椭圆
上,半径为2,直线
与直线
为圆
的两条切线.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)试问:
是否为定值?若是,求出该定值;若不是,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2017-10-10 08:54:38
答案(点此获取答案解析)
同类题1
已知椭圆
C
:
1(
a
>
b
>0),椭圆
C
上的点到焦点距离的最大值为9,最小值为1.
(1)求椭圆
C
的标准方程;
(2)求椭圆
C
上的点到直线
l
:4
x
﹣5
y
+40=0的最小距离?
同类题2
已知椭圆
的长轴长为4,且短轴的两个端点与右焦点是一个等边三角形的三个顶点,
为坐标原点.
(1)求椭圆
的方程;
(2)过椭圆的右焦点
作直线
,与椭圆相交于
,
两点,求
面积的最大值,并求此时直线
的方程.
同类题3
已知椭圆
的离心率为
,椭圆
的四个顶点围成的四边形的面积为
.
(1)求椭圆
的标准方程;
(2)设
为椭圆
的右顶点,过点
且斜率不为0的直线
与椭圆
相交于
,
两点,记直线
,
的斜率分别为
,
,求证:
为定值.
同类题4
已知椭圆
的右焦点为
,且离心率为
,
的三个顶点都在椭圆
上,设
三条边
的中点分别为
,且三条边所在直线的斜率分别为
,且
均不为0.
为坐标原点,若直线
的斜率之和为1.则
__________.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题