刷题首页
题库
高中数学
题干
过点
的椭圆
的离心率为
,椭圆与
轴交于两点
、
,过点
的直线
与椭圆交于另一点
,并与
轴交于点
,直线
与直线
交于点
.
(1)求该椭圆的标准方程;
(2)当点
异于点
时,求证:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2012-02-13 08:57:00
答案(点此获取答案解析)
同类题1
已知双曲线
C
1
的渐近线是
x
±2
y
=0,焦点坐标是
F
1
(-
,0)、
F
2
(
,0).
(1)求双曲线
C
1
的方程;
(2)若椭圆
C
2
与双曲线
C
1
有公共的焦点,且它们的离心率之和为
,点
P
在椭圆
C
2
上,且|
PF
1
|=4,求∠
F
1
PF
2
的大小.
同类题2
给定椭圆
C
:
(
),称圆心在原点
O
,半径为
的圆是椭圆
C
的“卫星圆”.若椭圆
C
的离心率
,点
在
C
上.
(1)求椭圆
C
的方程和其“卫星圆”方程;
(2)点
P
是椭圆
C
的“卫星圆”上的一个动点,过点
P
作直线
,
使得
,与椭圆
C
都只有一个交点,且
,
分别交其“卫星圆”于点
M
,
N
,证明:弦长
为定值.
同类题3
已知椭圆对称轴为坐标轴,离心率
且经过点
,求该椭圆的标准方程.
同类题4
已知椭圆
:
(
)的离心率为
,
为椭圆
上位于第一象限内的一点.
(1)若点
的坐标为
,求椭圆
的标准方程;
(2)设
为椭圆
的左顶点,
为椭圆
上一点,且
,求直线
的斜率.
同类题5
已知椭圆
C
:
的离心率为
,长半轴长为短轴长的
b
倍,
A
,
B
分别为椭圆
C
的上、下顶点,点
.
求椭圆
C
的方程;
若直线
MA
,
MB
与椭圆
C
的另一交点分别为
P
,
Q
,证明:直线
PQ
过定点.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定值问题