刷题首页
题库
高中数学
题干
过点
的椭圆
的离心率为
,椭圆与
轴交于两点
、
,过点
的直线
与椭圆交于另一点
,并与
轴交于点
,直线
与直线
交于点
.
(1)求该椭圆的标准方程;
(2)当点
异于点
时,求证:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2012-02-13 08:57:00
答案(点此获取答案解析)
同类题1
(题文)如图,已知椭圆
:
经过点
,且离心率等于
,点
,
分别为椭圆
的左、右顶点,
,
是椭圆
上非顶点的两点,且
的面积等于
.
(1)求椭圆
的方程;
(2)过点
作
交椭圆
于点
,求证:
.
同类题2
已知椭圆
:
的左、右焦点分别为
、
,第二象限的点
在椭圆
上,且
,若椭圆
的离心率为
,则直线
的斜率为( )
A.
B.
C.
D.
同类题3
椭圆
E
:
(
)的离心率为
,右焦点为
F
,上顶点为
B
,且
.
(1)求椭圆
E
的方程:
(2)是否存在直线
l
,使得
l
交椭圆
E
于
M
,
N
两点,且
F
恰是
的垂心?若存在,求出直线
l
的方程:若不存在,说明理由,
同类题4
已知椭圆
的离心率为
,右焦点为
,斜率为1的直线
与椭圆
交于
两点,以
为底边作等腰三角形,顶点为
.
(1)求椭圆
的方程;
(2)求
的面积.
同类题5
已知椭圆
:
的离心率为
,过椭圆
右焦点
的直线
与椭圆
交于点
(点
在第一象限).
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知
为椭圆
的左顶点,平行于
的直线
与椭圆相交于
两点.判断直线
是否关于直线
对称,并说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定值问题