刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,两焦点与短轴的一个端点的连线构成的三角形面积为
.
(I)求椭圆
的方程;
(II)设与圆
相切的直线
交椭圆
于
,
两点(
为坐标原点),
的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2019-04-18 05:08:45
答案(点此获取答案解析)
同类题1
在平面直角坐标系
中,点
,点
在
轴上,点
在
轴非负半轴上,点
满足:
(1)当点
在
轴上移动时,求动点
的轨迹C的方程;
(2)设
为曲线C上一点,直线
过点
且与曲线C在点
处的切线垂直,
与C的另一个交点为
,若以线段
为直径的圆经过原点,求直线
的方程.
同类题2
已知两动圆
和
(
),把它们的公共点的轨迹记为曲线
,若曲线
与
轴的正半轴的交点为
,且曲线
上的相异两点
满足:
.
(1)求曲线
的轨迹方程;
(2)证明直线
恒经过一定点,并求此定点的坐标;
(3)求
面积
的最大值.
同类题3
已知中心在原点,对称轴为坐标轴的椭圆
的一个焦点F在抛物线
的准线上,且椭圆
过点
,直线与椭圆
交于A,B两个不同点.
(1)求椭圆
的方程;
(2)若直线的斜率为
,且不过点P,设直线PA,PB的斜率分别为
,
,求
的值.
同类题4
为抛物线
上一点,且在第一象限,过点
作
垂直该抛物线的准线于点
为抛物线的焦点,
为坐标原点, 若四边形
的四个顶点在同一个圆上,则该圆的方程为_______
相关知识点
平面解析几何
圆锥曲线