刷题宝
  • 刷题首页
题库 高中数学

题干

已知椭圆的离心率为,短轴长为2.
(1)求椭圆的标准方程;
(2)设直线与椭圆交于两点,为坐标原点,若,
求证:点在定圆上.
上一题 下一题 0.99难度 解答题 更新时间:2020-02-29 08:10:26

答案(点此获取答案解析)

同类题1

已知过椭圆的左焦点,作斜率为的直线,交椭圆于两点.
(1)若原点到直线的距离为,求直线的方程;
(2)设点,直线与椭圆交于另一点,直线与椭圆交于另一点.设的斜率为,则是否为定值?若是,求出该定值;若不是,请说明理由.

同类题2

设椭圆:的左、右焦点分别为,过的直线交椭圆于两点,若椭圆的离心率为,的周长为16.
(Ⅰ)求椭圆的方程;
(Ⅱ)设不经过椭圆的中心而平行于弦的直线交椭圆于点,设弦的中点分别为.证明:三点共线.

同类题3

如果以抛物线过焦点的弦为直径的圆截y轴所得的弦长为4, 该圆的方程是 

同类题4

已知椭圆的离心率为,经过点
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点作直线交椭圆于两点,是坐标原点,求△的面积的最大值,并求此时直线的方程.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 椭圆的标准方程
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)