刷题首页
题库
高中数学
题干
已知
是椭圆
的两个焦点,
为椭圆上一点,且△
是直角三角形,则△
的面积为( ).
A.
B.
C.
或8
D.
或8
上一题
下一题
0.99难度 单选题 更新时间:2019-12-04 08:40:10
答案(点此获取答案解析)
同类题1
在平面直角坐标系
中,点
是圆
:
上的动点,定点
,线段
的垂直平分线交
于
,记
点的轨迹为
.
(Ⅰ)求轨迹
的方程;
(Ⅱ)若动直线
:
与轨迹
交于不同的两点
、
,点
在轨迹
上,且四边形
为平行四边形.证明:四边形
的面积为定值.
同类题2
已知椭圆
C
的中心为坐标原点
O
,焦点
F
1
,
F
2
在
x
轴上,椭圆
C
短轴端点和焦点所组成的四边形为正方形,且椭圆
C
短轴长为2.
(1)求椭圆
C
的标准方程.
(2)
P
为椭圆
C
上一点,且∠
F
1
PF
2
=
,求△
PF
1
F
2
的面积.
同类题3
设椭圆
:
的左右焦点分别为
,
,上顶点为
.
(Ⅰ)若
.
(
i
)求椭圆
的离心率;
(
ii
)设直线
与椭圆
的另一个交点为
,若
的面积为
,求椭圆
的标准方程;
(Ⅱ)由椭圆
上不同三点构成的三角形称为椭圆的内接三角形,当
时,若以
为直角顶点的椭圆
的内接等腰直角三角形恰有3个,求实数
的取值范围.
同类题4
已知动圆与圆
相切,且与圆
相内切,记圆心的轨迹为曲线.
(Ⅰ)求曲线C的方程;
(Ⅱ)设Q为曲线C上的一个不在轴上的动点,O为坐标原点,过点
作OQ的平行线交曲线C于M,N两个不同的点, 求△QMN面积的最大值.
同类题5
已知
是椭圆
:
的左焦点,
O
为坐标原点,
为椭圆上的点.
(1)求椭圆
的标准方程;
(2)若点
都在椭圆
上,且
中点
在线段
(不包括端点)上,求
面积的最大值,及此时直线
的方程.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆的弦长、焦点弦
椭圆中三角形(四边形)的面积