刷题首页
题库
高中数学
题干
设
F
1
,
F
2
分别是椭圆
C
:
的左、右焦点,
M
为直线
y
=2
b
上的一点,△
F
1
MF
2
是等边三角形,则椭圆
C
的离心率为( )
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2020-01-11 04:17:53
答案(点此获取答案解析)
同类题1
F
1
,
F
2
是椭圆
C
1
和双曲线
C
2
的公共焦点,
e
1
,
e
2
分别为曲线
C
1
,
C
2
的离心率,
P
为曲线
C
1
,
C
2
的一个公共点,若
,且
,则
e
1
∈_____.
同类题2
已知椭圆
的两个焦点分别为
,若椭圆上存在点
使得
是钝角,则椭圆离心率的取值范围是( )
A.
B.
C.
D.
同类题3
已知椭圆
.
(1)求椭圆
的离心率;
(2)设
为原点,若点
在直线
上,点
在椭圆
上,且
,求线段
长度的最小值.
同类题4
已知椭圆
的左右焦点为
,抛物线
以
为焦点且与椭圆相交于点
、
,直线
与抛物线
相切
(I)求抛物线
的方程和点
的坐标;
(II)求椭圆的方程和离心率.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
求椭圆的离心率或离心率的取值范围