刷题首页
题库
高中数学
题干
已知椭圆
的右焦点为
,上顶点为
,
周长为
,离心率为
.
(1)求椭圆
的方程;
(2)若点
是椭圆
上第一象限内的一个点,直线
过点
且与直线
平行,直线
且
与椭圆
交于
两点,与
交于点
,是否存在常数
,使
.若存在,求出
的值,若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-15 08:26:24
答案(点此获取答案解析)
同类题1
已知椭圆
:
离心率为
,且经过点
.
(1)求椭圆方程;
(2)直线
交椭圆于
,
两点,当
面积等于
时,求
的值.
同类题2
阿基米德(公元前287年—公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆
C
的焦点在
x
轴上,且椭圆
C
的离心率为
,面积为12
,则椭圆
C
的方程为( ).
A.
B.
C.
D.
同类题3
已知椭圆
的离心率
,过焦点且垂直于x轴的直线被椭圆截得的线段长为3
(1)求椭圆的方程;
(2)已知P为直角坐标平面内一定点,动直线l:
与椭圆交于A、B两点,当直线PA与直线PB的斜率均存在时,若直线PA与PB的斜率之和为与t无关的常数,求出所有满足条件的定点P的坐标.
同类题4
已知中心在原点的椭圆
C
的右焦点为
F
(1,0),离心率等于
,则
C
的方程是________.
同类题5
设椭圆
:
的左右焦点分别为
,
,离心率
,过
且垂直于
轴的直线被椭圆
截得的长为
.
(1)求椭圆
的方程;
(2)已知点
的坐标为
,直线
:
不过点
且与椭圆
交于
、
两点,设
为坐标原点,
,求证:直线
过定点.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程