刷题首页
题库
高中数学
题干
中心在坐标原点,对称轴为坐标轴的椭圆
过
、
两点,
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
,
两点,求当
取何值时,
的面积最大.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-01 09:12:04
答案(点此获取答案解析)
同类题1
已知椭圆
的左、右焦点与其短轴的一个端点是正三角形的三个顶点,点
在椭圆
上,直线
与椭圆
交于
,
两点,与
轴、
轴分别相交于点
和点
,且
,点
是点
关于
轴的对称点,
的延长线交椭圆于点
,过点
、
分别作
轴的垂线,垂足分别为
、
.
(1)求椭圆
的方程;
(2)是否存在直线
,使得点
平分线段
,
?若存在,求出直线
的方程;若不存在,请说明理由.
同类题2
在平面直角坐标系中,以坐标原点为中心,以坐标轴为对称轴的帮圆
C
经过点
M
(2,1),
N
.
(1)求椭圆
C
的标准方程;
(2)经过点
M
作倾斜角互补的两条直线,分别与椭圆
C
相交于异于
M
点的
A
,
B
两点,当△
AMB
面积取得最大值时,求直线
AB
的方程.
同类题3
已知椭圆
:
过点
,短轴一个端点到右焦点的距离为2.
(1)求椭圆
的方程;
(2)设过定点
的直线
与椭圆交于不同的两点
、
,若坐标原点
在以线段
为直径的圆外,求直线
的斜率
的取值范围.
同类题4
已知椭圆
:
的左右焦点分别为
,
,左顶点为
,上顶点为
,
的面积为
.
(1)求椭圆
的方程;
(2)设直线
:
与椭圆
相交于不同的两点
,
,
是线段
的中点.若经过点
的直线
与直线
垂直于点
,求
的取值范围.
同类题5
如图,在平面直角坐标系
中,焦点在
轴上的鞘园C:
经过点
,且
经过点
作斜率为
的直线
交椭圆
C
与
A
、
B
两点(
A
在
轴下方).
(1)求椭圆
C
的方程;
(2)过点
且平行于
的直线交椭圆于点
M
、
N
,求
的值;
(3)记直线
与
轴的交点为
P
,若
,求直线
的斜率
的值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中三角形(四边形)的面积