刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,
,
分别是椭圆的左右焦点,过点
的直线交椭圆于
,
两点,且
的周长为12.
(Ⅰ)求椭圆
的方程
(Ⅱ)过点
作斜率为
的直线
与椭圆
交于两点
,
,试判断在
轴上是否存在点
,使得
是以
为底边的等腰三角形若存在,求点
横坐标的取值范围,若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-07 04:17:49
答案(点此获取答案解析)
同类题1
已知点
,椭圆
:
的离心率为
,
是椭圆
的右焦点,直线
的斜率为
,
为坐标原点. 设过点
的动直线
与
相交于
两点.
(1)求
的方程;
(2)是否存在这样的直线
,使得
的面积为
,若存在,求出
的方程;若不存在,请说明理由.
同类题2
在平面直角坐标系
xOy
中,已知椭圆
C
:
=1(
a
>
b
>0)的离心率为
,且过点
,点
P
在第四象限,
A
为左顶点,
B
为上顶点,
PA
交
y
轴于点
C
,
PB
交
x
轴于点
D
.
(1) 求椭圆
C
的标准方程;
(2) 求△
PCD
面积的最大值.
同类题3
已知椭圆
的离心率为
,点
在
上.
(1) 求椭圆的方程;
(2) 设
分别是椭圆
的上、下焦点,过
的直线
与椭圆
交于不同的两点
,求
的内切圆的半径的最大值.
同类题4
已知
是椭圆
的左、右焦点,过左焦点
的直线与椭圆
交于
两点且
,
,则椭圆
的离心率为____;若
,则椭圆方程为__________.
同类题5
已知椭圆
:
经过点
,且离心率为
.
(I)求椭圆
的方程;
(II)若一组斜率为
的平行线,当它们与椭圆
相交时,证明:这组平行线被椭圆
截得的线段的中点在同一条直线上.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程