刷题首页
题库
高中数学
题干
如图所示,直线
与椭圈
交于
A
、
B
两点,记
面积为
S
;
(1)求在
,
的条件下
S
的最大值;
(2)当
,
,
时,求直线
的方程;
上一题
下一题
0.99难度 解答题 更新时间:2020-02-18 07:40:13
答案(点此获取答案解析)
同类题1
以椭圆
的中心
O
为圆心,以
为半径的圆称为该椭圆的“伴随”.已知椭圆的离心率为
,且过点
.
(1)求椭圆
C
及其“伴随”的方程;
(2)过点
作“伴随”的切线
l
交椭圆
C
于
A
,
B
两点,记
为坐标原点)的面积为
,将
表示为
m
的函数,并求
的最大值.
同类题2
已知椭圆
过点
且离心率为
.
(1)求椭圆C的方程;
(2)是否存在过点
的直线
与椭圆
C
相交于
A,B
两点,且满足
.若存在,求出直线
的方程;若不存在,请说明理由.
同类题3
在平面直角坐标系
中,已知
、
分别为椭圆
的左、右焦点,且椭圆
经过点
和点
,其中
为椭圆
的离心率.
(1)求椭圆
的标准方程;
(2)过点
的直线
交椭圆
于另一点
,点
在直线
上,且
,若
,求直线
的斜率.
同类题4
椭圆
的离心率为
,长轴端点与短轴端点间的距离为
.
(1)求椭圆
的方程;
(2)过点
的直线
与椭圆
交于
两点,
为坐标原点,当
为直角时,求直线
的斜率.
同类题5
设
,在平面直角坐标系中,已知向量
,向量
,
,动点
的轨迹为
A.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)已知
,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且
(O为坐标原点),并求出该圆的方程;
(3)已知
,设直线
与圆C:
(1<R<2)相切于A
1
,且
与轨迹E只有一个公共点B
1
,当R为何值时,|A
1
B
1
|取得最大值?并求最大值.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
直线与椭圆的位置关系
根据直线与椭圆的位置关系求参数或范围
椭圆中三角形(四边形)的面积