刷题首页
题库
高中数学
题干
已知动点
到点
的距离与点
到直线
的距离的比值为
.
(1)求动点
的轨迹
的方程;
(2)设
为轨迹
与
轴正半轴的交点,
上是否存在两点
,使得
是以
为直角顶点的等腰直角三角形?若存在,请说明满足条件的
的个数;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-23 11:12:02
答案(点此获取答案解析)
同类题1
已知曲线
上任意一点
到直线
:
的距离是它到点
距离的2倍;曲线
是以原点为顶点,
为焦点的抛物线.
(1)求
,
的方程;
(2)设过点
的动直线与曲线
相交于
,
两点,分别以
,
为切点引曲线
的两条切线
,
,设
,
相交于点
.连接
的直线交曲线
于
,
两点.
(
i
)求证:
;
(
ii
)求
的最小值.
同类题2
已知复数
(
,
是虚数单位),且
(1)求复数
对应点
的轨迹
的方程;
(2)若过点
的直线
交曲线
于
两点,且线段
的中点到
轴的距离为
,求直线
的方程.
同类题3
已知
依次满足
(1)求点
的轨迹;
(2)过点
作直线
交以
为焦点的椭圆于
两点,线段
的中点到
轴的距离为
,且直线
与点
的轨迹相切,求该椭圆的方程;
(3)在(2)的条件下,设点
的坐标为
,是否存在椭圆上的点
及以
为圆心的一个圆,使得该圆与直线
都相切,如存在,求出
点坐标及圆的方程,如不存在,请说明理由.
同类题4
已知某椭圆C,它的中心在坐标原点,左焦点为F(﹣
,0),且过点D(2,0).
(1)求椭圆C的标准方程;
(2)若已知点A(1,
),当点P在椭圆C上变动时,求出线段PA中点M的轨迹方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
轨迹问题——椭圆
求直线与椭圆的交点坐标