刷题首页
题库
初中数学
题干
如图①,将一个由五个边长为1的小正方形组成的图形剪开可以拼成一个正方形.
(1)拼成的正方形的面积与边长分别是多少?
(2)你能在图②中连结四个格点(每一个小正方形的顶点叫做格点),画出一个面积为10的正方形吗?如果不能,请说明理由;如果能,请在图②中画出这个正方形.
上一题
下一题
0.99难度 解答题 更新时间:2018-12-10 05:40:22
答案(点此获取答案解析)
同类题1
如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,于点D,则BD的长为
A.3
B.
C.4
D.
同类题2
如图,在边长是4×4,小正方形边长为1的正方形网格图中,线段
AB
的两个端点都在格点上,若以
AB
为斜边,则可以作出_____个格点直角三角形,并在答题卡的图中作出其中面积最大的格点直角三角形.
同类题3
在每个小正方形的边长为1的网格中,点
A
,
B
,
C
,
D
均在格点上,点
E
,
F
分别为线段
BC
,
DB
上的动点,且
BE
=
D
A.
(1)如图①所示,当
BE
=
时,计算
AE
+
AF
的值等于____;
(2)当
AE
+
AF
取最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段
AE
,
AF
,并简要说明点
E
和点
F
的位置是如何找到的(不要求证明)
同类题4
如图,小方格都是边长为1的正方形,则△
ABC
中
BC
边上的高是( )
A.1.6
B.1.4
C.1.5
D.2
同类题5
如图①,我们在“格点”直角坐标系上可以看到:要找
或
的长度,可以转化为求
或
的斜边长.
例如:从坐标系中发现:
,
,所以
,
,所以由勾股定理可得:
.
(1)在图①中请用上面的方法求线段
的长:
______;在图②中:设
,
,试用
,
,
,
表示:
______.
(2)试用(1)中得出的结论解决如下题目:已知:
,
,
为
轴上的点,且使得
为等腰三角形,请求出
点的坐标.
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
勾股定理与网格问题