刷题首页
题库
初中数学
题干
下图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()
A.18cm
2
B.36cm
2
C.72cm
2
D.108cm
2
上一题
下一题
0.99难度 单选题 更新时间:2019-01-19 10:58:55
答案(点此获取答案解析)
同类题1
如图,一只蚂蚁从长、宽都是4dm,高是8dm的长方体纸箱的A点沿纸箱爬到B点,则它所爬行的最短路线的长是___.
同类题2
如图所示的大正方形是由八个全等的直角三角形和一个小正方形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S
1
、S
2
、S
3
.若正方形EFGH的边长为2,则S
1
+S
2
+S
3
=________.
同类题3
勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感.他惊喜地发现:当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明.下面是小聪利用图1证明勾股定理的过程:
将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:
.
证明:连结DB,过点D作BC边上的高DF,
则DF=EC=
,
∵
,
又∵
,
∴
,
∴
请参照上述证法,利用图2完成下面的证明:
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.
求证:
.
证明:连结
,
∵
,
又∵
,
∴
.
∴
.
同类题4
如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是( )
A.9
B.10
C.
D.
同类题5
如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )
A.20
B.25
C.
D.35
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
用勾股定理构造图形解决问题