刷题首页
题库
初中数学
题干
如图,在菱形
ABCD
中,对角线
AC
=8,
BD
=6,点
E
,
F
分别是边
AB
,
BC
的中点,点
P
在
AC
上运动,在运动过程中,存在
PE
+
PF
的最小值,则这个最小值是( )
A.3
B.4
C.5
D.6
上一题
下一题
0.99难度 单选题 更新时间:2011-08-05 10:46:25
答案(点此获取答案解析)
同类题1
如图,有一块一边长为24 m的长方形绿地,在绿地旁边B处有健身器材,由于居住在A处的居民践踏了绿地,小颖想在A处立一个标牌“少走___步,踏之何忍”但小颖不知应填什么数字,请你帮助她填上好吗?(假设两步为1米)
同类题2
阅读
在平面直角坐标系中,以任意两点P(x
1
,y
1
),Q(x
2
,y
2
)为端点的线段的中点坐标为
运用
(1)如图,矩形ONEF的对角线相交于点M,ON,OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为________;
(2)在平面直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A,B,C构成平行四边形的顶点,求点D的坐标.
同类题3
如图,四边形ABCD中,∠A=60°,∠B=∠D=90°, BC=2 ,CD=3,则边AB的长度是( )
A.
B.
C.4
D.无法确定
同类题4
如图∠B=90º,AB=16cm,BC=12cm,AD=21cm,CD=29cm,求四边形ABCD的面积.
同类题5
已知:如图,在四边形ABCD中,AD∥BC,M为CD中点,AM平分∠DAB,AD+BC=A
A.求证:BM平分∠AB
B.
小淇证明过程如下:
延长BC至点F,使得CF=AD,连接MF.
∵ AD∥BC, ∴ ∠D=∠MCF.
∵ M为CD中点,∴ DM=CM.
在△ADM和△FCM中,
∴ △ADM≌△FCM(SAS). ∴ AM=FM.
∵ BF=BC+CF=BC+AD=AB,∴ △ABF是等腰三角形.
∴ BM平分∠ABC(等腰三角形底边上的中线与顶角的角平分重合).
(1)请你简要叙述小淇证明方法的错误之处;
(2)若AB=5,AM=3,求四边形ABCD面积.
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
用勾股定理解三角形