刷题首页
题库
初中数学
题干
如图,有一个△
ABC
,三边长为
AC
=6,
BC
=8,
AB
=10,沿
AD
折叠,使点
C
落在
AB
边上的点
E
处.
(1)试判断△
ABC
的形状,并说明理由.
(2)求线段
CD
的长.
上一题
下一题
0.99难度 解答题 更新时间:2019-10-08 03:53:28
答案(点此获取答案解析)
同类题1
如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在射线BC上运动,AD=AB=1,则△ADE的周长最小值为______.
同类题2
如图,有一块直角三角形纸片,两直角边AC =6cm,BC =8cm,将纸片沿
AD
折叠,直角边
AC
恰好落在斜边上,且与
AE
重合,则△BDE的面积为______
.
同类题3
如图,在矩形
ABCD
中,
AB
=3,
BC
=2,
M
是
AD
边的中点,
N
是
AB
边上的动点,将△
AMN
沿
MN
所在直线折叠,得到△
A
′
MN
,连接
A
′
C
,则
A
′
C
的最小值是__.
同类题4
如图①是一个直角三角形纸片,∠
C
=90°,
AB
=13
cm
,
BC
=5
cm
,将其折叠,使点
C
落在斜边上的点
C
′处,折痕为
BD
(如图②),求
DC
的长.
同类题5
如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB′=
_______
.
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
勾股定理与折叠问题