刷题首页
题库
初中数学
题干
在△
ABC
中,∠
C
=90°,∠
B
=60°,下列说法中,不一定正确的是( )
A.
BC
2
+
AC
2
=
AB
2
B.2
BC
=
AB
C.若△
DEF
的边长分别为1,2,
,则△
DEF
和△
ABC
全等
D.若
AB
中点为
M
,连接
CM
,则△
BCM
为等边三角形
上一题
下一题
0.99难度 单选题 更新时间:2020-02-26 10:12:19
答案(点此获取答案解析)
同类题1
如图,在坐标平面内,已知点
A
(0,3)、
B
(6,5),
(1)连接
AB
,在x轴上确定点P,使PA=PB(用尺规作图,保留作图痕迹,不写作法),并求出P点坐标;
(2)点
Q
是x轴上的动点,求点
Q
与
A
、
B
两点的距离之和的最小值.
同类题2
在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.
(1)若a∶b=3∶4,c=75cm,求a、b;
(2)若a∶c=15∶17,b=24,求△ABC的面积;
(3)若c-a=4,b=16,求a、c;
(4)若∠A=30°,c=24,求c边上的高hc;
(5)若a、b、c为连续整数,求a+b+c.
同类题3
如图,在△ABC中, AB=3,AC=2.当∠B最大时,BC的长是()
A.1
B.
C.
D.5
同类题4
已知:某校有一块四边形空地
,如图现计划在该空地上种草皮,经测量
,
,若每平方米草皮需
元,问需投入多少元?
同类题5
如图,在
中,
,
,
.
平分
交
边于点
,则
________.
相关知识点
图形的性质
三角形
勾股定理
勾股定理及应用
勾股定理
用勾股定理解三角形