刷题首页
题库
初中数学
题干
如图,已知等腰三角形
中,
,点
,
分别在边
、
上,且
,连接
、
,交于点
.
(1)判断
与
的数量关系,并说明理由;
(2)求证:过点
、
的直线垂直平分线段
.
上一题
下一题
0.99难度 解答题 更新时间:2017-07-28 10:45:12
答案(点此获取答案解析)
同类题1
在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.
(1)如图1,若DF⊥AC,垂足为F,证明:DE=DF
(2)如图2,将∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.DE=DF仍然成立吗?说明理由.
(3)如图3,将∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,DE=DF仍然成立吗?说明理由.
同类题2
如图,在xOy中,已知点A(a﹣1,a+b),B(a,0),且
=0,C为x轴上B点右侧的动点,以AC为腰作等腰△ACD,使AD=AC,∠CAD=∠OAB,DB交y轴于点P.
(1)求A、B两点坐标;
(2)求证:AO=AB;
(3)求证:∠OBP=∠OAB.
同类题3
已知DB∥EH,F是两条射线内一点,连接DF、EF.
(1)如图1:求证:∠F=∠D+∠E;
(2)如图2:连接DE,∠BDE、∠HED的角平分交于点F时,求∠F的度数;
(3)在(2)条件下,点A是射线DB上任意一点,连接AF,并延长交EH于点G,求证:AF=FG.
同类题4
如图:已知在△ABC中,∠ACB=90°,AC=BC=1,点D是AB上任意一点,AE⊥AB,且AE=BD,DE与AC相交于点
A.
(1)试判断△CDE的形状,并说明理由.
(2)是否存在点D,使AE=AF?如果存在,求出此时AD的长,如果不存在,请说明理由.
同类题5
如图,四边形
中,
,
,
,
是四边形
内一点,
是四边形
外一点,且
,
,
(1)求证:
;
(2)求证:
.
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定
用SAS直接证明三角形全等
线段垂直平分线的判定