刷题首页
题库
初中数学
题干
如图,△
ABC
、△
CDE
都是等腰三角形,且
CA
=
CB
,
CD
=
CE
,∠
ACB
=∠
DCE
=
α
,
AD
,
BE
相交于点
O
,点
M
,
N
分别是线段
AD
,
BE
的中点,以下4个结论:①
AD
=
BE
;②∠
DOB
=180°-
α
;③△
CMN
是等边三角形;④连
OC
,则
OC
平分∠
AOE
.正确的是( )
A.①②③
B.①②④
C.①③④
D.①②③④
上一题
下一题
0.99难度 单选题 更新时间:2020-01-13 07:37:29
答案(点此获取答案解析)
同类题1
小明在学习三角形的知识时, 发现如下三个有趣的结论:
(1)如图①, ∠A=∠C=90°, ∠ABC的平分线与∠ADC的平分线交于点E, 则BE、DE的位置关系是
;
(2)如图②, ∠A=∠C=90°, BE平分∠ABC, DF平分∠ADC的外角, 则BE与DF的位置关系是
;
(3)如图③, ∠A=∠C=90°, ∠ABC的外角平分线与∠ADC的外角平分线交于点E, 则BE、DE的位置关系是
. 请你完成命题 (3)证明.
同类题2
在探究三角形内角和等于180°的证明过程时,小明同学通过认真思考后认为,可以通过剪拼的方法将一个角剪下来,然后把这个角进行平移,从而实现把三角形的三个内角转移到一个平角中去,如图所示:
(1)小明同学根据剪拼的过程,抽象出几何图形;并进行了推理证明,请你帮助小明完成
证明过程.
证明:过点
B
作
BN
//
AC
,延长
AB
到
M
∵
∴
∵
∴
(2)小军仿照小明的方法将三角形的三个内角都进行了移动,也将三个内角转移到一个平角中去,只不过平角的顶点放到了
AB
边上,如图所示:请你仿照小明的证明过程,抽象出几何图形再进行证明.
(3)小兰的方法和小明以及小军的方法都不相同,她将三角形三个内角分别沿某一条直线翻折,一共进行了三次尝试,如图所示:
小兰第三次成功的关键是什么,请你写出证明思路.
同类题3
如图,
中,
,
是
的中点,
,求
的度数.
同类题4
关于三角形,下列说法错误的是( )
A.三角形具有稳定性
B.三角形任意两边之和大于第三边
C.三角形的内角和是180°
D.钝角三角形一定不是等腰三角形
同类题5
如图,在△ABC 中,∠B=70°, ∠C=40°,AD 是 BC 边上的高,AE 是∠BAC 的平分线,则∠DAE 的度数是( )
A.15°
B.16°
C.70°
D.18°
相关知识点
图形的性质
三角形
三角形基础
与三角形有关的角
三角形的内角和定理
三角形内角和定理的证明