刷题首页
题库
高中数学
题干
南北朝时期的数学古籍《张邱建算经》有如下一道题:“今有十等人,每等一人,宫赐金以等次差(即等差)降之,上三人,得金四斤,持出:下四人后入得三斤,持出:中间三人未到者,亦依等次更给,问:每等人比下等人多得几斤?”()
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2019-12-02 11:17:12
答案(点此获取答案解析)
同类题1
中国古代数学著作《九章算术》中有这样一个问题:“某贾人擅营,月入益功疾(注:从第2月开始,每月比前一月多入相同量的铜钱),3月入25贯,全年(按12个月计)共入510贯”,则该人12月营收贯数为( )
A.35
B.65
C.70
D.60
同类题2
《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,文各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与 丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,甲所得为________.
同类题3
“今有女善织,日益功疾,初日织五尺,今一月共织九匹三丈.”其白话意译为:“现有一善织布的女子,从第2天开始,每天比前一天多织相同数量的布,第一天织了5尺布,现在一个月(按30天计算)共织布390尺.”则每天增加的数量为
____
尺,设该女子一个月中第
n
天所织布的尺数为
,则
______
.
同类题4
我国古代数学家提出的“中国剩余定理”又称“孙子定理”,它在世界数学史上具有光辉的一页,堪称数学史上名垂百世的成就,而且一直启发和指引着历代数学家们.定理涉及的是数的整除问题,其数学思想在近代数学、当代密码学研究及日常生活都有着广泛应用,为世界数学的发展做出了巨大贡献,现有这样一个整除问题:将
到
这
个整数中能被
除余
且被
除余
的数按从小到大的顺序排成一列,构成数列
,那么此数列的项数为( )
A.
B.
C.
D.
同类题5
我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,已知第
行的所有数字之和为
,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,……,则此数列的前56项和为( )
A.2060
B.2038
C.4084
D.4108
相关知识点
数列
等差数列