刷题首页
题库
高中数学
题干
某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元.该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元.
(1)试分别建立出厂价格、销售价格的模型,并分别求出函数解析式;
(2)假设商店每月购进这种商品m件,且当月销完,试写出该商品的月利润函数;
(3)求该商店月利润的最大值.(定义运算
上一题
下一题
0.99难度 解答题 更新时间:2014-01-15 12:42:16
答案(点此获取答案解析)
同类题1
如图,半径为4m的水轮绕着圆心O逆时针做匀速圆周运动,每分钟转动4圈,水轮圆心O距离水面2m,如果当水轮上点P从离开水面的时刻(P
0
)开始计算时间.
(1)将点P距离水面的高度y(m)与时间t(s)满足的函数关系;
(2)求点P第一次到达最高点需要的时间.
同类题2
设向量
,记
,函数
的周期是()
A.
B.
C.
D.
同类题3
有一块半径为
(
是正常数)的半圆形空地,开发商计划征地建一个矩形的游泳池
和其附属设施,附属设施占地形状是等腰
,其中
为圆心,
,
在圆的直径上,
,
,
在半圆周上,如图.设
,征地面积为
,当
满足
取得最大值时,开发效果最佳,开发效果最佳的角
和
的最大值分别为( )
A.
B.
C.
D.
同类题4
如图,某摩天轮上一点
在
时刻距离地面高度满足
,
,已知摩天轮的半径为
米,点
距地面的高度为
米,摩天轮做匀速转动,每
分钟转一圈,点
的起始位置在摩天轮的最低点处.则
(米)关于
(分钟)的解析式为( )
A.
B.
C.
D.
同类题5
在锐角
中,已知
,
,若点
是线段
上一点(不含端点),过
作
于
,
于
.
(1)若
外接圆的直径长为
,求
的值;
(2)求
的最小值
(3)问点
在何处时,
的面积最大?最大值为多少?
相关知识点
三角函数与解三角形
三角函数
三角函数的应用