刷题首页
题库
高中数学
题干
某公园要设计如图所示的景观窗格(其结构可以看成矩形在四个角处对称地截去四个全等的三角形所得,如图二中所示多边形
),整体设计方案要求:内部井字形的两根水平横轴
米,两根竖轴
米,记景观窗格的外框(如图二实线部分,轴和边框的粗细忽略不计)总长度为
米.
(1)若
,且两根横轴之间的距离为
米,求景观窗格的外框总长度;
(2)由于预算经费限制,景观窗格的外框总长度不超过
米,当景观窗格的面积(多边形
的面积)最大时,给出此景观窗格的设计方案中
的大小与
的长度.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-06 06:54:30
答案(点此获取答案解析)
同类题1
如图,已知
,
,
是一条直路上的三点,
与
各等于1
km
,从三点分别遥望塔
M
,在
处看见塔在北偏东
方向,在
处看见塔在正东方向,在
处看见塔在南偏东
方向,则塔到直路
的最短距离( )
A.
B.
C.1
D.
同类题2
如图,某小区准备将闲置的一直角三角形地块开发成公共绿地,图中
.设计时要求绿地部分(如图中阴影部分所示)有公共绿地走道
,且两边是两个关于走道
对称的三角形(
和
).现考虑方便和绿地最大化原则,要求点
与点
均不重合,
落在边
上且不与端点
重合,设
.
(1)若
,求此时公共绿地的面积;
(2)为方便小区居民的行走,设计时要求
的长度最短,求此时绿地公共走道
的长度.
同类题3
如图所示,某城市有一条从正西方AO通过市中心O后向东北OB的公路,现要修一条地铁L,在OA,OB上各设一站A,B,地铁在AB部分为直线段,现要求市中心O与AB的距离为
,设地铁在AB部分的总长度为
.
按下列要求建立关系式:
设
,将y表示成
的函数;
设
,
用m,n表示y.
把A,B两站分别设在公路上离中心O多远处,才能使AB最短?并求出最短距离.
同类题4
某校在圆心角为直角,半径为
的扇形区域内进行野外生存训练.如图所示,在相距
的
,
两个位置分别为300,100名学生,在道路
上设置集合地点
,要求所有学生沿最短路径到
点集合,记所有学生进行的总路程为
.
(1)设
,写出
关于
的函数表达式;
(2)当
最小时,集合地点
离点
多远?
同类题5
如图,OA,OB是两条互相垂直的笔直公路,半径OA=2km的扇形AOB是某地的一名胜古迹区域.当地政府为了缓解该古迹周围的交通压力,欲在圆弧AB上新增一个入口P(点P不与A,B重合),并新建两条都与圆弧AB相切的笔直公路MB,MN,切点分别是B,P.当新建的两条公路总长最小时,投资费用最低.设∠POA=
,公路MB,MN的总长为
.
(1)求
关于
的函数关系式,并写出函数的定义域;
(2)当
为何值时,投资费用最低?并求出
的最小值.
相关知识点
三角函数与解三角形
三角函数
三角函数的应用
三角函数在生活中的应用