刷题首页
题库
高中数学
题干
某小区拟对如图一直角△ABC区域进行改造,在三角形各边上选一点连成等边三角形
,在其内建造文化景观.已知
,则
面积最小值为
____
上一题
下一题
0.99难度 填空题 更新时间:2019-06-06 03:52:33
答案(点此获取答案解析)
同类题1
如图,有一块边长为
(百米)的正方形区域
.在点
处有一个可转动的探照灯,其照射角
始终为
(其中点
,
分别在边
,
上),设
(百米).
(1)用
表示出
的长度,并探求
的周长
是否为定值;
(2)设探照灯照射在正方形
内部区域的面积为
(平方百米),求
S
的最大值.
同类题2
我国古代数学家刘徽于公元263年在《九章算术注》中提出“割圆术”:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣.即通过圆内接正多边形细割圆,并使正多边形的面积无限接近圆的面积,进而来求得较为精确的圆周率.如果用圆的内接正
边形逼近圆,算得圆周率的近似值记为
,那么用圆的内接正
边形逼近圆,算得圆周率的近似值
可表示成( )
A.
B.
C.
D.
同类题3
如图是一个半径为1千米的扇形景点的平面示意图,
.原有观光道路
OC
,且
.为便于游客观赏,景点管理部门决定新建两条道路
PQ
、
PA
,其中
P
在原道路
OC
(不含端点
O
、
C
)上,
Q
在景点边界
OB
上,且
,同时维修原道路的
OP
段,因地形原因,新建
PQ
段、
PA
段的每千米费用分别是
万元、
万元,维修
OP
段的每千米费用是
万元.
(1)设
,求所需总费用
,并给出
的取值范围;
(2)当
P
距离
O
处多远时,总费用最小.
同类题4
如图,OA,OB是两条互相垂直的笔直公路,半径OA=2km的扇形AOB是某地的一名胜古迹区域.当地政府为了缓解该古迹周围的交通压力,欲在圆弧AB上新增一个入口P(点P不与A,B重合),并新建两条都与圆弧AB相切的笔直公路MB,MN,切点分别是B,P.当新建的两条公路总长最小时,投资费用最低.设∠POA=
,公路MB,MN的总长为
.
(1)求
关于
的函数关系式,并写出函数的定义域;
(2)当
为何值时,投资费用最低?并求出
的最小值.
同类题5
如图,已知单位圆
O
,
A
(1,0),
B
(0,1),点
D
在圆上,且
AOD
=
,点
C
从点
A
沿圆弧
运动到点
B
,作
BE
OC
于点
E
,设
COA
=
.
(1)当
时,求线段
DC
的长;
(2)
OEB
的面积与
OCD
面积之和为
S
,求
S
的最大值.
相关知识点
三角函数与解三角形
三角函数
三角函数的应用
几何中的三角函数模型
三角函数在生活中的应用
辅助角公式