刷题首页
题库
高中数学
题干
一蒸汽机火车每小时消耗煤的费用与火车行驶的速度的立方成正比,已知速度为
时,每小时消耗的煤价值40元,其余费用每小时1250元,问火车行驶的速度是多少时(速度不超过
),全程
费用最少?
上一题
下一题
0.99难度 解答题 更新时间:2011-05-19 10:32:53
答案(点此获取答案解析)
同类题1
如图,现要在边长为
的正方形
内建一个交通“环岛”.正方形的四个顶点为圆心在四个角分别建半径为
(
不小于
)的扇形花坛,以正方形的中心为圆心建一个半径为
的圆形草地.为了保证道路畅通,岛口宽不小于
,绕岛行驶的路宽均不小于
.
(1)求
的取值范围;(运算中
取
)
(2)若中间草地的造价为
元
,四个花坛的造价为
元
,其余区域的造价为
元
,当
取何值时,可使“环岛”的整体造价最低?
同类题2
如图,某湿地公园的鸟瞰图是一个直角梯形,其中:
,
,
,
长1千米,
长
千米,公园内有一个形状是扇形的天然湖泊
,扇形
以
长为半径,弧
为湖岸,其余部分为滩地,
B
,
D
点是公园的进出口.公园管理方计划在进出口之间建造一条观光步行道:线段
线段
弧
,其中
Q
在线段
上(异于线段端点),
与弧
相切于
P
点(异于弧端点]根据市场行情
,
段的建造费用是每千米10万元,湖岸段弧
的建造费用是每千米
万元(步行道的宽度不计),设
为
弧度观光步行道的建造费用为
万元.
(1)求步行道的建造费用
关于
的函数关系式,并求其走义域;
(2)当
为何值时,步行道的建造费用最低?
同类题3
如图,
是南北方向的一条公路,
是北偏东
方向的一条公路,某风景区的一段边界为曲线
.为方便游客光,拟过曲线
上的某点分别修建与公路
,
垂直的两条道路
,
,且
,
的造价分别为5万元
百米,40万元
百米,建立如图所示的直角坐标系
,则曲线符合函数
模型,设
,修建两条道路
,
的总造价为
万元,题中所涉及的长度单位均为百米.
(1)求
解析式;
(2)当
为多少时,总造价
最低?并求出最低造价.
同类题4
如图所示,有
、
、
三座城市,
城在
城的正西方向,且两座城市之间的距离为
;
城在
城的正北方向,且两座城市之间的距离为
.由
城到
城只有一条公路
,甲有急事要从
城赶到
城,现甲先从
城沿公路
步行到点
(不包括
、
两点)处,然后从点
处开始沿山路
赶往
城.若甲在公路上步行速度为每小时
,在山路上步行速度为每小时
,设
(单位:弧度),甲从
城赶往
城所花的时间为
(单位:
).
(1)求函数
的表达式,并求函数的定义域;
(2)当点
在公路
上何处时,甲从
城到达
城所花的时间最少,并求所花的最少的时间的值.
同类题5
欲制作一个容积为
的圆柱形蓄水罐(无盖),为能使所用的材料最省,它的底面半径应为( )
A.
B.
C.
D.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
成本最小问题