刷题宝
  • 刷题首页
题库 高中数学

题干

(本题满分14分)已知函数f(x)=的图象在点(1,f(1))处的切线方程是,函数g(x)= (a、b∈R,a≠0)在x=2处取得极值-2.
(1)求函数f(x)、g(x)的解析式;
(2)若函数(其中是g(x)的导函数)在区间(,)没有单调性,求实数的取值范围;
(3)设k∈Z,当时,不等式恒成立,求k的最大值.
上一题 下一题 0.99难度 解答题 更新时间:2015-03-26 05:17:57

答案(点此获取答案解析)

同类题1

已知函数,.
(1)若函数存在与直线垂直的切线,求实数的取值范围;
(2)设,若有极大值点,求证:.

同类题2

若关于的不等式,对任意恒成立,则的取值范围是( )
A.B.C.D.

同类题3

已知函数
(Ⅰ)若求在处的切线方程;
(Ⅱ)求在区间上的最小值;
(Ⅲ)若在区间上恰有两个零点,求的取值范围.

同类题4

(本小题满分12分)已知,.
(1)当时,求函数的单调区间;
(2)对一切,恒成立,求实数的取值范围.

同类题5

若函数()的导函数在区间上有零点,则在下列区间上单调递增的是()
A.B.
C.D.
相关知识点
  • 函数与导数
  • 导数及其应用
  • 导数的综合应用
  • 导数在函数中的其他应用
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)