刷题首页
题库
高中数学
题干
已知函数
,
;
(Ⅰ)若函数
在[1,2]上是减函数,求实数
的取值范围;
(Ⅱ)令
,是否存在实数
,当
(
是自然对数的底数)时,函数
的最小值是
.若存在,求出
的值;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2013-10-25 09:46:28
答案(点此获取答案解析)
同类题1
如图,在圆心角为
,半径为
的扇形铁皮上截取一块矩形材料
,其中点
为圆心,点
在圆弧上,点
在两半径上,现将此矩形铁皮
卷成一个以
为母线的圆柱形铁皮罐的侧面(不计剪裁和拼接损耗),设矩形的边长
,圆柱形铁皮罐的容积为
.
(1)求圆柱形铁皮罐的容积
关于
的函数解析式,并指出该函数的定义域;
(2)当
为何值时,才使做出的圆柱形铁皮罐的容积
最大?最大容积是多少? (圆柱体积公式:
,
为圆柱的底面枳,
为圆柱的高)
同类题2
在正三棱锥V—ABC内,有一半球,其底面与正三棱锥的底面重合,且与正三棱锥的三个侧面都相切,若半球的半径为2,则正三棱锥的体积最小时,其高等于__________.
同类题3
已知函数
,直线
与函数
的图像都相切于点(1,0).
(1)求直线
的方程及函数
的解析式;
(2)若
(其中
是
的导函数),求函数
的极大值.
同类题4
(本小题满分14分)某地拟建一座长为
米的大桥
,假设桥墩等距离分布,经设计部门测算,两端桥墩
、
造价总共为
万元,当相邻两个桥墩的距离为
米时(其中
),中间每个桥墩的平均造价为
万元,桥面每1米长的平均造价为
万元.
(1)试将桥的总造价表示为
的函数
;
(2)为使桥的总造价最低,试问这座大桥中间(两端桥墩
、
除外)应建多少个桥墩?
同类题5
某制瓶厂要制造一批轴截面如图所示的瓶子,瓶子是按照统一规格设计的,瓶体上部为半球体,下部为圆柱体,并保持圆柱体的容积为3π
.
设圆柱体的底面半径为
x
,圆柱体的高为
h
,瓶体的表面积为
S.
(1)写出
S
关于
x
的函数关系式;
(2)如何设计瓶子的尺寸(不考虑瓶壁的厚度),可以使表面积
S
最小,并求出最小值
.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题