刷题宝
  • 刷题首页
题库 高中数学

题干

设函数.
(1)若,求的单调区间;
(2)若函数在处有极值,请证明:对任意时,都有.
上一题 下一题 0.99难度 解答题 更新时间:2017-04-04 04:09:07

答案(点此获取答案解析)

同类题1

已知函数f(x)=(x﹣2)ex﹣+x,其中∈R,e是自然对数的底数.
(1)当>0时,讨论函数f(x)在(1,+∞)上的单调性;
(2)若函数g(x)=f(x)+2﹣,证明:使g(x)≥0在上恒成立的实数a能取到的最大整数值为1.

同类题2

已知函数.
(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8−8ln2;
(Ⅱ)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.

同类题3

(本小题满分12分)
已知函数.
(Ⅰ)当时,求的极小值;
(Ⅱ)若直线对任意的都不是曲线的切线,求的取值范围.

同类题4

已知函数在处有极值.
(1)求a,b的值;
(2)求的单调区间.

同类题5

已知函数(其中为自然对数的底数,).
(1)若是函数的极值点,求的值,并求的单调区间;
(2)若时都有,求实数的取值范围.
相关知识点
  • 函数与导数
  • 导数及其应用
  • 导数在研究函数中的作用
  • 利用导数研究函数的单调性
  • 利用导数研究函数的极值
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)