刷题宝
  • 刷题首页
题库 高中数学

题干

(本小题满分12分)
已知函数.
(Ⅰ)当时,求的极小值;
(Ⅱ)若直线对任意的都不是曲线的切线,求的取值范围.
上一题 下一题 0.99难度 解答题 更新时间:2010-07-24 03:17:05

答案(点此获取答案解析)

同类题1

设函数f(x)=ax2–a–lnx,g(x)=,其中a∈R,e=2.718…为自然对数的底数.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)证明:当x>1时,g(x)>0;
(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.

同类题2

已知函数.
(1)讨论的单调性;
(2)当时,,求的最大整数值.

同类题3

已知函数,其中常数.
(1)当时,求函数的单调减区间;
(2)设定义在上的函数在点处的切线方程为,若在内恒成立,则称为函数的“类对称点”,当时,试问是否存在“类对称点”,若存在,请求出一个“类对称点”的横坐标,若不存在,请说明理由.

同类题4

已知函数,(为实数),
(1)讨论函数的单调区间;
(2)求函数的极值;

同类题5

已知函数,.
(1)当时,求函数的单调区间;
(2)设函数,若,且在上恒成立,求的取值范围;
(3)设函数,若,且在上存在零点,求的取值范围.
相关知识点
  • 函数与导数
  • 导数及其应用
  • 导数在研究函数中的作用
  • 利用导数研究函数的单调性
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)