刷题首页
题库
高中数学
题干
已知函数
.
(Ⅰ)求证:函数
在
上单调递增;
(Ⅱ)若存在
,使得
,试求
的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2017-05-25 04:54:58
答案(点此获取答案解析)
同类题1
已知
为
上的可导函数,且
,均有
,则以下判断正确的是( )
A.
B.
C.
D.
与
大小无法确定
同类题2
设函数
,则“
”是“
有4个不同的实数根”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
同类题3
函数
的导函数为
,若
恒有
成立,且
,则不等式
的解集为( )
A.
B.
C.
D.
同类题4
设函数
,
,若
,则( )
A.
B.
C.
D.
同类题5
已知函数
(
为自然对数的底数)与
的图象上存在两组关于
轴对称的点,则实数
的取值范围是( )
A.
B.
C.
D.
相关知识点
函数与导数
导数及其应用
导数在研究函数中的作用
利用导数研究函数的单调性
用导数判断或证明已知函数的单调性
利用导数研究能成立问题