刷题首页
题库
高中数学
题干
某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总收益R与产量x的关系式为R(x)=
则总利润最大时,每年生产的产品是 ( )
A.100单位
B.150单位
C.200单位
D.300单位
上一题
下一题
0.99难度 单选题 更新时间:2018-02-27 03:33:00
答案(点此获取答案解析)
同类题1
今年是公元2018年,已知本张试卷的出卷人在公元
年时年龄为
岁,则出卷人的出生年份是
________
.(假设出生当年的年龄为1岁)
同类题2
现有A,B两个投资项目,投资两项目所获得利润分别是
和
(万元),它们与投入资金
(万元)的关系依次是:其中
与
平方根成正比,且当
为4(万元)时
为1(万元),又
与
成正比,当
为4(万元)时
也是1(万元);某人甲有3万元资金投资.
(Ⅰ)分别求出
,
与
的函数关系式;
(Ⅱ)请帮甲设计一个合理的投资方案,使其获利最大,并求出最大利润是多少?
同类题3
一年一度的“双十一”网络购物节来了,某工厂网上直营店决定对某商品进行一次评估.该商品原来每件售价为20元,年销售7万件.为了抓住“双十一”的大好商机,扩大该商品的影响力,提高年销售量.工厂决定引进新生产线对该商品进行技术.升级,并提高定价到
元.新生产线投入需要固定成本
万元,变化成本
万元,另外需要
万元作为新媒体宣传费用.问:当该商品技术升级后的销售量
至少应达到多少万件时,才可能使升级后的年销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
同类题4
某公司在甲、乙两地同时销售一种品牌车,销售
辆该品牌车的利润(单位:万元)分别为
和
.若该公司在两地共销售15辆,则能获得的最大利润为( )
A.90万元
B.60万元
C.120万元
D.120.25万元
同类题5
某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点
为圆心的两个同心圆弧和延长后通过点
的两条线段围成.设圆弧
、
所在圆的半径分别为
、
米,圆心角为
(弧度).
(1)若
,
,
,求花坛的面积;
(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为
元/米,弧线部分的装饰费用为
元/米,预算费用总计
元,问线段
的长度为多少时,花坛的面积最大?
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
利用二次函数模型解决实际问题