刷题首页
题库
高中数学
题干
某地区规划道路建设,考虑道路铺设方案,方案设计图中,求表示城市,两点之间连线表示两城市间可铺设道路,连线上数据表示两城市间铺设道路的费用,要求从任一城市都能到达其余各城市,并且铺设道路的总费用最小。例如:在三个城市道路设计中,若城市间可铺设道路的线路图如图1,则最优设计方案如图2,此时铺设道路的最小总费用为10.
现给出该地区可铺设道路的线路图如图3,则铺设道路的最小总费用为____________。
上一题
下一题
0.99难度 填空题 更新时间:2012-07-05 05:23:51
答案(点此获取答案解析)
同类题1
已知矩形的周长为1,它的面积
S
与矩形的一条边长
x
之间的函数关系中,定义域为( )
A.
B.
C.
D.
同类题2
一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形
(如图所示,其中
O
为圆心,
在半圆上),设
,木梁的体积为
V
(单位:m
3
),表面积为
S
(单位:m
2
).
(1)求
V
关于
θ
的函数表达式;
(2)求
的值,使体积
V
最大;
(3)问当木梁的体积
V
最大时,其表面积
S
是否也最大?请说明理由.
同类题3
闽越水镇是闽侯县打造闽都水乡文化特色小镇核心区,该小镇有一块1800平方米的矩形地块,开发商准备在中间挖出三个矩形池塘养闽侯特色金鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植柳树,形成柳中观鱼特色景观.假设池塘周围的基围宽均为2米,如图,设池塘所占的总面积为
平方米.
(1)试用
表示a及
;
(2)当
取何值时,才能使得
最大?并求出
的最大值.
同类题4
设
,
为
的展开式的各项系数之和,
,
,
(
表示不超过实数x的最大整数),则
的最小值为
_____
同类题5
某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元,因为在生产过程中平均每生产一件产品有0.5立方米污水排出,为了净化环境,工厂设计两套方案对污水进行处理,并准备实施.
方案一:工厂的污水先净化处理后再排出,每处理1立方米污水所用原料费2元,并且每月排污设备损耗为30000元;
方案二:工厂将污水排到污水处理厂统一处理,每处理1立方米污水需付14元的排污费.问:
(1)工厂每月生产3000件产品时,你作为厂长,在不污染环境,又节约资金的前提下应选择哪种方案?
通过计算加以说明.
(2)若工厂每月生产6000件产品,你作为厂长,又该如何决策呢?
相关知识点
函数与导数
函数的应用
函数模型及其应用
函数模型的应用实例
建立拟合函数模型解决实际问题