刷题首页
题库
高中数学
题干
我校为进行“阳光运动一小时”活动,计划在一块直角三角形
的空地上修建一个占地面积为
(平方米)的矩形
健身场地.如图,点
在
上,点
在
上,且
点在斜边
上.已知
,
米,
米,
.设矩形
健身场地每平方米的造价为
元,再把矩形
以外(阴影部分)铺上草坪,每平方米的造价为
元(
为正常数).
(1)试用
表示
,并求
的取值范围;
(2)求总造价
关于面积
的函数
;
(3)如何选取
,使总造价
最低(不要求求出最低造价).
上一题
下一题
0.99难度 解答题 更新时间:2016-01-15 12:27:44
答案(点此获取答案解析)
同类题1
在边长为4的正方形ABCD的边上有动点P,动点P从B点开始沿折线BCDA运动到A终止,设P点移动的距离为x,
的面积为S.
(1)求函数S=f(x)的解析式、定义域,画出函数图像;
(2)求函数S=f(x)的值域.
同类题2
某企业生产
,
两种产品,根据市场调查与预测,
产品的利润
与投资
成正比,其关系如图(1)所示;
产品的利润
与投资
的算术平方根成正比,其关系如图(2)所示(注:利润
和投资
的单位均为万元).
图(1) 图(2)
(1)分别求
,
两种产品的利润
关于投资
的函数解析式.
(2)已知该企业已筹集到18万元资金,并将全部投入
,
两种产品的生产.
①若平均投入两种产品的生产,可获得多少利润?
②如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润为多少万元?
同类题3
水葫芦原产于巴西,
年作为观赏植物引入中国. 现在南方一些水域水葫芦已泛滥成灾严重影响航道安全和水生动物生长. 某科研团队在某水域放入一定量水葫芦进行研究,发现其蔓延速度越来越快,经过
个月其覆盖面积为
,经过
个月其覆盖面积为
. 现水葫芦覆盖面积
(单位
)与经过时间
个月的关系有两个函数模型
与
可供选择.
(参考数据:
)
(Ⅰ)试判断哪个函数模型更合适,并求出该模型的解析式;
(Ⅱ)求原先投放的水葫芦的面积并求约经过几个月该水域中水葫芦面积是当初投放的
倍.
同类题4
甲、乙二人从
A
地沿同一方向去
B
地,途中都使用两种不同的速度
v
1
与
v
2
(
v
1
<
v
2
),甲前一半的路程使用速度
v
1
,后一半的路程使用速度
v
2
;乙前一半的时间使用速度
v
1
,后一半的时间使用速度
v
2
,关于甲、乙二人从
A
地到达
B
地的路程与时间的函数图象及关系,有如图所示的四个不同的图示分析(其中横轴
t
表示时间,纵轴
s
表示路程,
C
是
AB
的中点),则其中可能正确的图示分析为
A.
B.
C.
D.
同类题5
(本小题满分12分)
某地设计修建一条26公里长的轻轨交通路线,该轻轨交通路线的起点站和终点站已建好,余下工程只需要在该段路线的起点站和终点站之间修建轻轨道路和轻轨中间站,相邻两轻轨站之间的距离均为
公里.经预算,修建一个轻轨中间站的费用为2000万元,修建
公里的轻轨道路费用为(
)万元.设余下工程的总费用为
万元.
(Ⅰ)试将
表示成
的函数;
(Ⅱ)需要修建多少个轻轨中间站才能使
最小?其最小值为多少万元?
相关知识点
函数与导数
函数的应用
函数模型及其应用
函数模型的应用实例
建立拟合函数模型解决实际问题