刷题首页
题库
高中数学
题干
(2015秋•蕲春县期中)电信局为了配合客户不同需要,设有A,B两种优惠方案.这两种方案应付话费(元)与通话时间x(min)之间的关系如图所示,其中D的坐标为(
,230).
(1)若通话时间为2小时,按方案A,B各付话费多少元?
(2)方案B从500分钟以后,每分钟收费多少元?
(3)通话时间在什么范围内,方案B比方案A优惠?
上一题
下一题
0.99难度 解答题 更新时间:2016-02-23 03:16:33
答案(点此获取答案解析)
同类题1
某市某水产养殖户进行小龙虾销售,已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价
(元/千克)与时间第
(天)之间的函数关系为:
,日销售量
(千克)与时间第
(天)之间的函数关系如图所示:
(1)求日销售量
与时间
的函数关系式?
(2)哪一天的日销售利润最大?最大利润是多少?
(3)在实际销售的前40天中,该养殖户决定每销售1千克小龙虾,就捐赠
元给村里的特困户,在这前40天中,每天扣除捐赠后的日销售利润随时间
的增大而增大,求
的取值范围.
同类题2
某工厂有一个容量为300吨的水塔,每天从早上6时起到晚上10时止供应该厂的生产和生活用水.已知该厂生活用水为每小时10吨,生产用水量
(吨)与时间
(单位:小时,且规定早上6时
)的函数关系式为:
,水塔的进水量分为10级,第一级每小时进水10吨,以后每提高一级,每小时进水量就增加10吨.若某天水塔原有水100吨,在开始供水的同时打开进水管.
(1)若进水量选择为
级,水塔中剩余水量为
吨,试写出
与
的函数关系式;
(2)如何选择进水量,既能始终保证该厂的用水(水塔中水不空)又不会使水溢出?
同类题3
某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元.设该公司的仪器月产量为
台,当月产量不超过400台时,总收益为
元,当月产量超过400台时,总收益为
元.(注:总收益=总成本+利润)
(1)将利润表示为月产量
的函数
;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?
同类题4
据报道,青海湖水在最近50年内减少了10%,如果按此规律,设2013年的湖水量为
m
,从2013年起,过
x
年后湖水量
y
与
x
的函数关系是
________
.
同类题5
某公司为了激励业务员的积极性,对业绩在60万到200万的业务员进行奖励奖励方案遵循以下原则:奖金
y
(单位:万元)随着业绩值
x
(单位:万元)的增加而增加,且奖金不低于1.5万元同时奖金不超过业绩值的5%.
(1)若某业务员的业绩为100万核定可得4万元奖金,若该公司用函数
(
k
为常数)作为奖励函数模型,则业绩200万元的业务员可以得到多少奖励?(已知
,
)
(2)若采用函数
作为奖励函数模型试确定最小的正整数
a
的值.
相关知识点
函数与导数
函数的应用
函数模型及其应用