刷题首页
题库
高中数学
题干
有一组实验数据如下表所示:
x
1
2
3
4
5
y
1.5
5.9
13.4
24.1
37
下列所给函数模型较适合的是( )
A.
y
=log
a
x
(
a
>1)
B.
y
=
ax
+
b
(
a
>1)
C.
y
=
ax
2
+
b
(
a
>0)
D.
y
=log
a
x
+
b
(
a
>1)
上一题
下一题
0.99难度 单选题 更新时间:2017-12-10 10:26:19
答案(点此获取答案解析)
同类题1
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用
年的隔热层,每厘米厚的隔热层建造成本为
万元.该建筑物每年的能源消耗费用
(单位:万元)与隔热层厚度
(单位:厘米)满足关系:
.若不建隔热层,每年的能源消耗费用为
万元.设
为隔热层建造费用与
年的能源消耗费用之和.
(1)求
的值及
的表达式;
(2)隔热层修建多厚时,总费用
最小,并求其最小值.
同类题2
设
是某港口水的深度
(米)关于时间
(时)的函数,其中
.下表是该港口某一天从
时至
时记录的时间
与水深
的关系表:
经长期观察,函数
的图象可以近似地看成函数
的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( ).
A.
,
B.
,
C.
,
D.
,
同类题3
无锡市政府决定规划地铁三号线:该线起於惠山区惠山城铁站,止於无锡新区硕放空港产业园内的无锡机场站,全长28公里,目前惠山城铁站和无锡机场站两个站点已经建好,余下的工程是在已经建好的站点之间铺设轨道和等距离修建停靠站.经有关部门预算,修建一个停靠站的费用为6400万元,铺设距离为
公里的相邻两个停靠站之间的轨道费用为
万元.设余下工程的总费用为
万元.(停靠站位于轨道两侧,不影响轨道总长度)
(1)试将
表示成
的函数;
(2)需要建多少个停靠站才能使工程费用最小,并求最小值.
同类题4
某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为
,
,山区边界曲线为
,计划修建的公路为
,如图所示,
,
为
的两个端点,测得点
到
,
的距离分别为5千米和40千米,点
到
,
的距离分别为20千米和2.5千米,以
,
在的直线分别为
,
轴,建立平面直角坐标系
,假设曲线
符合函数
(其中
,
为常数)模型.
(1)求
,
的值;
(2)设公路
与曲线
相切于
点,
的横坐标为
.
①请写出公路
长度的函数解析式
,并写出其定义域;
②当
为何值时,公路
的长度最短?求出最短长度.
同类题5
近年来大气污染防治工作得到各级部门的重视,某企业在现有设备下每日生产总成本
(单位:万元)与日产量
(单位:吨)之间的函数关系式为
,现为了配合环境卫生综合整治,该企业引进了除尘设备,每吨产品除尘费用为
万元,除尘后当日产量
时,总成本
.
(1)求
的值;
(2)若每吨产品出厂价为48万元,试求除尘后日产量为多少时,每吨产品的利润最大,最大利润为多少?
相关知识点
函数与导数
函数的应用
函数模型及其应用
函数模型的应用实例
利用给定函数模型解决实际问题