刷题首页
题库
高中数学
题干
为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为
,且每处理1吨二氧化碳得到价值为100元的可利用化工产品.该单位每月能否获利?如果能获利,求出每月最大利润;如果不能获利,则需要国家每月至少补贴多少元才能使该单位不亏损?
上一题
下一题
0.99难度 解答题 更新时间:2018-01-16 02:35:21
答案(点此获取答案解析)
同类题1
某公司试销一种成本单价为500元/件的新产品,规定试销时销售单价不低于成本单价,又不高于800元/件.经试销调查,发现销售量
(件)与销售单价
(元/件)可近似看作一次函数
的关系(如图所示).
(1)由图象,求函数
的表达式;
(2)设公司获得的毛利润(毛利润=销售总价﹣成本总价)为
元.试用销售单价
表示毛利润
,并求销售单价定为多少时,该公司获得最大毛利润?最大毛利润是多少?此时的销售量是多少?
同类题2
建造一间地面面积为12
的背面靠墙的猪圈, 底面为长方形的猪圈正面的造价为120元/
, 侧面的造价为80元/
, 屋顶造价为1120元. 如果墙高3
, 且不计猪圈背面的费用, 问怎样设计能使猪圈的总造价最低, 最低总造价是多少元?
同类题3
某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-
cos
t-sin
t,t∈0,24.
(1)求实验室这一天上午8时的温度;
(2)求实验室这一天的最大温差.
同类题4
甲厂以
千克/小时的速度匀速生产某种产品(生产条件要求
),每小时可获得利润是
元.
(1)要使生产该产品
小时获得的利润不低于
元,求
的取值范围;
(2)要使生产
千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.
同类题5
某商品每件成本为80元,售价为100元,每天售出100件。若售价降低
成(1成即为10%),售出商品的数量就增加
成,要求降价幅度不能导致亏本,记该商品一天营业额为
。
(1)求:该商品一天营业额
的表达式,并指出定义域;
(2)若要求该商品一天的营业额至少为10260元,求
的取值范围..
相关知识点
函数与导数
函数的应用
函数模型及其应用
函数模型的应用实例
利用给定函数模型解决实际问题