刷题首页
题库
高中数学
题干
如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形,由对称性,图中8个三角形都是全等的三角形,设
.
(1)用
表示线段
;
(2)设
,
,求
关于
的函数解析式;
(3)求八角形所覆盖面积
的最大值,并指出此时
的大小.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-14 06:42:43
答案(点此获取答案解析)
同类题1
如图所示,
是一个矩形花坛,其中
米,
米.现将矩形花坛
扩建成一个更大的矩形花坛
,要求:
在
上,
在
上,对角线
过
点,且矩形
的面积小于150平方米.
(1)设
长为
米,矩形
的面积为
平方米,试用解析式将
表示成
的函数,并确定函数的定义域;
(2)当
的长度是多少时,矩形
的面积最小?并求最小面积.
同类题2
如图,在四边形
中,
,
,
,
,动点
从点
出发,按照
路径沿边运动,设点
运动的路程为
,
的面积为
,则函数
的图像大致是( )
A.
B.
C.
D.
同类题3
某抛物线型拱桥水面宽度20
m
,拱顶离水面4
m
,现有一船宽9
m
,船在水面上高3
m
.
(1)建立适当平面直角坐标系,求拱桥所在抛物线标准方程;
(2)计算这条船能否从桥下通过.
同类题4
甲、乙两地相距500千米,一辆货车从甲地行驶到乙地,规定速度不得超过100千米
小时.已知货车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度
(千米
时)的平方成正比,比例系数为0.01;固定部分为
元(
).
(1)把全程运输成本
(元)表示为速度
(千米
时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
同类题5
某制造商制造并出售圆柱形瓶装的某种饮料,瓶子的底面半径是
r
,高
(单位:cm)一个瓶子的制造成本是
分,己知每出售
(注:
)的饮料,制造商可获利0.2分,且制造商能制造的瓶子底面的最大半径为6
cm
,记每瓶饮料的利润为
,则
=______,其实际意义是______.
相关知识点
函数与导数
函数的应用
函数模型及其应用
函数模型的应用实例
建立拟合函数模型解决实际问题
几何图形中的计算