刷题宝
  • 刷题首页
题库 高中数学

题干

已知f(x)=x2-a|x-1|-1,a∈R.
(1)判断并证明函数f(x)的奇偶性;
(2)若f(x)≥0对x∈[1,+∞)恒成立,求a的取值范围;
(3)写出f(x)在[-2,2]上的最大值g(a).(不需要解答过程)
上一题 下一题 0.99难度 解答题 更新时间:2019-12-04 02:04:51

答案(点此获取答案解析)

同类题1

函数的图像大致是(    ).
A.B.C.D.

同类题2

若函数满足下列条件:在定义域内存在,使得成立,则称函数具有性质;反之,若不存在,则称函数不具有性质.
(Ⅰ)证明:函数具有性质,并求出对应的的值;
(Ⅱ)试分别探究形如①()、②(且)、③(且)的函数,是否一定具有性质?并加以证明.
(Ⅲ)已知函数具有性质,求的取值范围;

同类题3

函数,其中,若动直线与函数的图像有三个不同的交点,它们的横坐标分别为,则是否存在最大值?若存在,在横线处填写其最大值;若不存在,直接填写“不存在”______________.

同类题4

函数是定义在上的偶函数,且满足.当时,.若在区间上方程恰有四个不相等的实数根,则实数的取值范围是(  )
A.B. C.D.

同类题5

函数的部分图像大致是()
A.B.C.D.
相关知识点
  • 函数与导数
  • 函数及其性质
  • 函数的基本性质
  • 函数奇偶性的定义与判断
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)