刷题首页
题库
高中数学
题干
某蛋糕店计划按天生产一种面包,每天生产量相同,生产成本每个6元,售价每个8元,未售出的面包降价处理,以每个5元的价格当天全部处理完.
(1)若该蛋糕店一天生产30个这种面包,求当天的利润
(单位:元)关于当天需求量
(单位:个,
)的函数解析式;
(2)蛋糕店记录了30天这种面包的日需求量(单位:个),整理得下表:
日需求量
28
29
30
31
32
33
频数
3
4
6
6
7
4
假设蛋糕店在这30天内每天生产30个这种面包,求这30天的日利润(单位:元)的平均数及方差.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-11 04:59:28
答案(点此获取答案解析)
同类题1
心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间,上课开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,并趋于稳定.分析结果和实验表明,设提出和讲述概念的时间为
(单位:分),学生的接受能力为
(
值越大,表示接受能力越强),
(1)开讲后多少分钟,学生的接受能力最强?能维持多少时间?
(2)试比较开讲后
分钟、
分钟、
分钟,学生的接受能力的大小;
(3)若一个数学难题,需要
的接受能力以及
分钟时间,老师能否及时在学生一直达到所需接受能力的状态下讲述完这个难题?
同类题2
某商品在近30天内每件的销售价格P元和时间t(t∈N)的关系如图所示.
(1)请确定销售价格P(元)和时间t(天)的函数解析式;
(2)该商品的日销售量Q(件)与时间t(天)的关系是:Q=﹣t+40(0≤t≤30,t∈N),求该商品的日销售金额y(元)与时间t(天)的函数解析式;
(3)求该商品的日销售金额y(元)的最大值,并指出日销售金额最大的一天是30天中的哪一天?
同类题3
某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:
,其中x是仪器的月总量.
(1)将利润表示为月产量的函数
;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(提示:总收益=总成本+利润)
同类题4
近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资240万元,根据行业规定,每个城市至少要投资80万元,由前期市场调研可知:甲城市收益
与投入
(单位:万元)满足
,乙城市收益
与投入
(单位:万元)满足
,设甲城市的投入为
(单位:万元),两个城市的总收益为
(单位:万元).
(1)当投资甲城市128万元时,求此时公司总收益;
⑵试问如何安排甲、乙两个城市的投资,才能使公司总收益最大?
相关知识点
函数与导数
函数的应用
函数模型及其应用
常见的函数模型(1)——二次、分段函数
分段函数模型的应用
计算几个数的平均数