刷题宝
  • 刷题首页
题库 高中数学

题干

在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k| n∈Z},k=0,1,2,3,4.给出如下四个结论:
①2 014∈[4];  ②-3∈[3];  ③Z=[0]∪[1]∪[2]∪[3]∪[4];④整数a,b属于同一“类”的充要条件是“a-b∈[0]”.其中,正确的结论是________.
上一题 下一题 0.99难度 填空题 更新时间:2019-11-22 08:47:35

答案(点此获取答案解析)

同类题1

设为给定的不小于的正整数,考察个不同的正整数,,,构成的集合,若集合的任何两个不同的非空子集所含元素的总和均不相等,则称集合为“差异集合”.
(1)分别判断集合,集合是否是“差异集合”;(只需写出结论)
(2)设集合是“差异集合”,记,求证:数列的前项和;
(3)设集合是“差异集合”,求的最大值.

同类题2

已知全集=,函数的定义域为集合,集合
(1)求; (2)求.

同类题3

已知等差数列与等比数列是非常数的实数列,设.
(1)请举出一对数列与,使集合中有三个元素;
(2)问集合中最多有多少个元素?并证明你的结论;

同类题4

已知是满足下列条件的集合:① ,;② 若,则;③ 若且,则.
(1)判断是否正确,说明理由;
(2)证明:“”是“”的充分条件;
(3)证明:若,则.

同类题5

集合,写出的所有子集__________.
相关知识点
  • 集合与常用逻辑用语
  • 集合
  • 集合的基本运算
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)