在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:

(Ⅰ)求这50个样本数据的平均数、众数和中位数;
(Ⅱ)根据样本数据,估算该校1200名学生共参加了多少次活动.

(Ⅰ)求这50个样本数据的平均数、众数和中位数;
(Ⅱ)根据样本数据,估算该校1200名学生共参加了多少次活动.
某学校八年级开展英语拼写大赛,一班和二班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示:
(1)根据图示填写下表

(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩比较好?
(3)已知一班的复赛成绩的方差是70,请求出二班复试成绩的方差,并说明哪个班成绩比较稳定?
(1)根据图示填写下表
班级 | 中位数(分) | 众数(分) | 平均数(分) |
一班 | 85 | | |
二班 | | 100 | 85 |

(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩比较好?
(3)已知一班的复赛成绩的方差是70,请求出二班复试成绩的方差,并说明哪个班成绩比较稳定?
下列说法正确的是( )
A.为了了解全国中学生每天体育锻炼的时间,应采取普查的方式 |
B.若甲的方差是![]() ![]() |
C.乐山市明天一定会下雨 |
D.一组数据![]() ![]() ![]() ![]() ![]() ![]() ![]() |
为了解某小区居民使用共享单车次数的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数统计如下:
(1)这10位居民一周内使用共享单车次数的中位数是 次,众数是 次.
(2)若小明同学把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是 .(填“中位数”,“众数”或“平均数”)
(3)若该小区有2000名居民,试估计该小区居民一周内使用共享单车的总次数.
使用次数 | 0 | 5 | 10 | 15 | 20 |
人数 | 1 | 1 | 4 | 3 | 1 |
(1)这10位居民一周内使用共享单车次数的中位数是 次,众数是 次.
(2)若小明同学把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是 .(填“中位数”,“众数”或“平均数”)
(3)若该小区有2000名居民,试估计该小区居民一周内使用共享单车的总次数.
某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,七名评委给该同学的打分(单位:分)情况如表:
关于七名评委给该同学的打分下列说法错误的是( )
评委 | 评委1 | 评委2 | 评委3 | 评委4 | 评委5 | 评委6 | 评委7 |
打分 | 6 | 8 | 7 | 8 | 5 | 7 | 8 |
关于七名评委给该同学的打分下列说法错误的是( )
A.中位数是8分 | B.众数是8分 |
C.极差是3分 | D.平均数是7分 |
我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.
(1)根据图示计算出a、b、c的值;
(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?
(3)计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.
| 平均分(分) | 中位数(分) | 众数(分) | 方差(分2) |
初中部 | a | 85 | b | s初中2 |
高中部 | 85 | c | 100 | 160 |
(1)根据图示计算出a、b、c的值;
(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?
(3)计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.

下列说法不正确的是( )
A.调查一架“歼20”隐形战机各零部件的质量,应采用抽样调查 |
B.一组数据2,2,3,3,3,4的众数是3 |
C.如果x1与x2的平均数是4,那么x1+1与x2+5的平均数是7 |
D.一组数据1,2,3,4,5的方差是2,那么数据11,12,13,14,15的方差也是2 |
某市一周空气质量报告某项污染指数的数据是:31,35,31,33,30,33,31.则对于这列数据表述正确的是()
A.众数是30 | B.中位数是31 | C.平均数是33 | D.极差是35 |