- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 调查收集数据的过程与方法
- 总体、个体、样本、样本容量
- 统计表
- + 扇形统计图
- 求扇形统计图的某项数目
- 求扇形统计图的圆心角
- 由扇形统计图求某项的百分比
- 由扇形统计图求总量
- 由扇形统计图推断结论
- 条形统计图和扇形统计图信息关联
- 折线统计图
- 观察、猜想与证明
- 实践与应用(暂存)
为了解某区初三学生的课余生活情况,调查小组在全区范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图(如图).如果该区有6000名初三学生,请你估计该区最喜欢体育运动的初三学生约有 名.

实验中学组织学生收听《学法交流》《音乐欣赏》《故事天地》《校园新闻》系列节目,其中收听《学法交流》节目的学生人数有
人,约占总人数的
.
(1)收听节目的总人数是多少?
(2)收听《音乐欣赏》的人数约占总人数的
,收听《音乐欣赏》的有多少人?


(1)收听节目的总人数是多少?
(2)收听《音乐欣赏》的人数约占总人数的

“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:
(1)样本中的总人数为 ,开私家车的人数m= ,扇形统计图中“骑自行车”所在扇形的圆心角为 度;
(2)补全条形统计图;
(3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行、坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?
(1)样本中的总人数为 ,开私家车的人数m= ,扇形统计图中“骑自行车”所在扇形的圆心角为 度;
(2)补全条形统计图;
(3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行、坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?

为了方便居民低碳出行,2016年10月1日起,聊城市公共自行车租赁系统(一期)试运行,越来越多的居民选择公共自行车作为出行的交通工具,市区某中学课外兴趣小组为了了解某小区居民出行方式的变化情况,随机抽取了该小区部分居民进行调查,并绘制了如图的条形统计图和扇形统计图(部分信息未给出)

请根据上面的统计图,解答下列问题:
(1)被调查的总人数是 ______ 人;
(2)公共自行车租赁系统运行后,被调查居民选择自行车作为出行方式的百分比提高了多少?
(3)如果该小区共有居民2000人,公共自行车租赁系统运行后估计选择自行车作为出行方式的有多少人?

请根据上面的统计图,解答下列问题:
(1)被调查的总人数是 ______ 人;
(2)公共自行车租赁系统运行后,被调查居民选择自行车作为出行方式的百分比提高了多少?
(3)如果该小区共有居民2000人,公共自行车租赁系统运行后估计选择自行车作为出行方式的有多少人?
九年级一班同学根据兴趣分成 A、B、C、D、E 五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则 D 小组的人数是( )


A.10 人 | B.l1 人 | C.12 人 | D.15 人 |
小明调查了本班同学最喜欢的球类运动情况,并作出了如图的统计图,下面说法正确的是( )


A.从图中可以直接看出全班总人数. |
B.从图中可以直接看出喜欢足球运动的人数最多. |
C.从图中可以直接看出喜欢各种球类运动的具体人数. |
D.从图中可以直接看出喜欢各种球类运动的人数的百分比. |
某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一幅不完整的扇形统计图(如图),其中“其他”部分所对应的扇形圆心角是36°,则“步行”的学生所占百分比是______.
某中学对全校学生进行文明礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:
(1)请将以上两幅统计图补充完整;
(2)在扇形统计图中,表示“不合格”的扇形的圆心角度数为_________;
(3)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有________人达标.
(1)请将以上两幅统计图补充完整;
(2)在扇形统计图中,表示“不合格”的扇形的圆心角度数为_________;
(3)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有________人达标.

国家教委规定“中小学生每天在校体育活动时间不低于1小时”.为此某中学为了了解学生体育活动情况,随机调查了720名毕业班学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,所得的数据制成了的扇形统计图和频数分布直方图.根据图示,解答下列问题:
(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的恰好是“每天锻炼超过1小时”的学生的概率是多少?
(2)“没时间”的人数是多少?并补全频数分布直方图;
(3)2010年这个地区初中毕业生约为3.2万人,按此调查,可以估计2010年这个地区初中毕业生中每天锻炼未超过1小时的学生约有多少万人?
(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的恰好是“每天锻炼超过1小时”的学生的概率是多少?
(2)“没时间”的人数是多少?并补全频数分布直方图;
(3)2010年这个地区初中毕业生约为3.2万人,按此调查,可以估计2010年这个地区初中毕业生中每天锻炼未超过1小时的学生约有多少万人?
